Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 593(7859): 424-428, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33767445

RESUMEN

Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-191,2. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-193. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Peso Corporal , COVID-19/prevención & control , Dependovirus/genética , Modelos Animales de Enfermedad , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Femenino , Humanos , Evasión Inmune/genética , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Tratamiento Farmacológico de COVID-19
2.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194459

RESUMEN

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina A Secretora , Animales , Ratones , Humanos , Inmunoglobulina G , Inmunoglobulina A , Administración Intranasal , Ratones Transgénicos
3.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891903

RESUMEN

The approval of safe and effective LNP-mRNA vaccines during the SARS-CoV-2 pandemic is catalyzing the development of the next generation of mRNA therapeutics. Proper characterization methods are crucial for assessing the quality and efficacy of these complex formulations. Here, we show that analytical ultracentrifugation (AUC) can measure, simultaneously and without any sample preparation step, the sedimentation coefficients of both the LNP-mRNA formulation and the mRNA molecules. This allows measuring several quality attributes, such as particle size distribution, encapsulation efficiency and density of the formulation. The technique can also be applied to study the stability of the formulation under stress conditions and different buffers.


Asunto(s)
COVID-19 , ARN Mensajero , SARS-CoV-2 , Ultracentrifugación , Ultracentrifugación/métodos , ARN Mensajero/genética , Humanos , SARS-CoV-2/genética , COVID-19/virología , Tamaño de la Partícula , Vacunas contra la COVID-19 , Nanopartículas/química
4.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834322

RESUMEN

Analytical ultracentrifugation (AUC) analysis shows that the SARS-CoV-2 trimeric Spike (S) protein adopts different quaternary conformations in solution. The relative abundance of the "open" and "close" conformations is temperature-dependent, and samples with different storage temperature history have different open/close distributions. Neutralizing antibodies (NAbs) targeting the S receptor binding domain (RBD) do not alter the conformer populations; by contrast, a NAb targeting a cryptic conformational epitope skews the Spike trimer toward an open conformation. The results highlight AUC, which is typically applied for molecular mass determination of biomolecules as a powerful tool for detecting functionally relevant quaternary protein conformations.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/química , Epítopos/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Ultracentrifugación , Dominios Proteicos
5.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686418

RESUMEN

This study aims to highlight the impact of physicochemical properties on the behaviour of nanopharmaceuticals and how much carrier structure and physiochemical characteristics weigh on the effects of a formulation. For this purpose, two commercially available nanosimilar formulations of Doxil and their respective carriers were compared as a case study. Although the two formulations were "similar", we detected different toxicological effects (profiles) in terms of in vitro toxicity and immunological responses at the level of cytokines release and complement activation (iC3b fragment), that could be correlated with the differences in the physicochemical properties of the formulations. Shedding light on nanosimilar key quality attributes of liposome-based materials and the need for an accurate characterization, including investigation of the immunological effects, is of fundamental importance considering their great potential as delivery system for drugs, genes, or vaccines and the growing market demand.


Asunto(s)
Doxorrubicina , Polietilenglicoles , Doxorrubicina/farmacología , Excipientes , Liposomas
7.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012103

RESUMEN

PEGylated lipids are one of the four constituents of lipid nanoparticle mRNA COVID-19 vaccines. Therefore, various concerns have been raised on the generation of anti-PEG antibodies and their potential role in inducing hypersensitivity reactions following vaccination or in reducing vaccine efficacy due to anti-carrier immunity. Here, we assess the prevalence of anti-PEG antibodies, in a cohort of vaccinated individuals, and give an overview of their time evolution after repeated vaccine administrations. Results indicate that, in our cohort, the presence of PEG in the formulation did not influence the level of anti-Spike antibodies generated upon vaccination and was not related to any reported, serious adverse effects. The time-course analysis of anti-PEG IgG showed no significant booster effect after each dose, whereas for IgM a significant increase in antibody levels was detected after the first and third dose. Data suggest that the presence of PEG in the formulation does not affect safety or efficacy of lipid-nanoparticle-based COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Inmunoglobulina G , Liposomas , Polietilenglicoles
8.
Regul Toxicol Pharmacol ; 106: 187-196, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31051191

RESUMEN

An early dialogue between nanomedicine developers and regulatory authorities are of utmost importance to anticipate quality and safety requirements for these innovative health products. In order to stimulate interactions between the various communities involved in a translation of nanomedicines to clinical applications, the European Commission's Joint Research Centre hosted a workshop titled "Bridging communities in the field of Nanomedicine" in Ispra/Italy on the 27th -28th September 2017. Experts from regulatory bodies, research institutions and industry came together to discuss the next generation of nanomedicines and their needs to obtain regulatory approval. The workshop participants came up with recommendations highlighting methodological gaps that should be addressed in ongoing projects addressing the regulatory science of nanomedicines. In addition, individual opinions of experts relevant to progress of the regulatory science in the field of nanomedicine were summarised in the format of a survey.


Asunto(s)
Nanomedicina , Toma de Decisiones , Sistemas de Apoyo a Decisiones Clínicas , Humanos , Encuestas y Cuestionarios
9.
Eur Biophys J ; 46(4): 375-382, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27832293

RESUMEN

Peptide-lipid interactions support a variety of biological functions. Of particular interest are those that underpin fundamental mechanisms of innate immunity that are programmed in host defense or antimicrobial peptide sequences found virtually in all multicellular organisms. Here we synthetically modulate antimicrobial peptide-lipid interactions using an archetypal helical antimicrobial peptide and synthetic membranes mimicking bacterial and mammalian membranes in solution. We probe these interactions as a function of membrane-induced folding, membrane stability and peptide-lipid ratios using a correlative approach encompassing light scattering and spectroscopy measurements such as circular dichroism spectroscopy, fluorescence and nuclear magnetic resonance spectroscopy. The peptide behavior is assessed against that of its anionic counterpart having similar propensities for α-helical folding. The results indicate strong correlations between peptide folding and membrane type, supporting folding-responsive binding of antimicrobial peptides to bacterial membranes. The study provides a straightforward approach for modulating structure-activity relationships in the context of membrane-induced antimicrobial action, thus holding promise for the rational design of potent antimicrobial agents.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Pliegue de Proteína , Liposomas Unilamelares/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Unión Proteica
10.
Anal Chem ; 86(24): 12143-51, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25393334

RESUMEN

Different analytical techniques, sedimentation flow field fractionation (SdFFF), asymmetrical flow field flow fractionation (AF4), centrifugal liquid sedimentation (CLS) and dynamic light scattering (DLS) have been used to give complementary size information about suspensions of silver nanoparticles (AgNPs) in the size range of 20-100 nm by taking advantage of the different physical principles on which are based. Particle morphology was controlled by TEM (Transmission Electron Microscopy). Both SdFFF and AF4 were able to accurately size all AgNPs; among sedimentation based techniques, CLS underestimated the average sizes of larger samples (70 and 100 nm), but it produced the best separation of bimodal mixtures Ag40/60 and Ag40/70 mix compared to SdFFF. On the contrary, DLS overestimated the average sizes of the smallest samples (20 and 30 nm) and it was unable to deal with bimodal mixtures. Quantitative mass and number particle size distributions were also calculated starting from UV-vis signals and ICP-MS data and the results evaluated as a means to address the issue of determining nanoparticle size distributions as required for implementation of European regulations relating to labeling of nanomaterials in consumer products. The results are discussed in light of possible particle aggregation state, analysis repeatability, size resolution and quantitative recoveries.


Asunto(s)
Nanopartículas del Metal , Plata/química , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Espectrofotometría Ultravioleta
11.
Artículo en Inglés | MEDLINE | ID: mdl-38865038

RESUMEN

The French National Metrology Institute (LNE) initiated a series of events to identify priorities for test methods and their harmonisation that directly address regulatory needs in Nanomedicine. One of these workshops entitled "The International Standardisation Roadmap for Nanomedicine" held in October 2023 (Paris, France) brought together key experts in the characterisation of nanomedicines and medical products containing nanomaterials, including the Joint Research Centre of the European Commission, SINTEF Industry and the metrology institutes of France, the UK, the USA and Canada, two flagship initiatives of the European Commission (PHOENIX and SAFE-n-MEDTECH Open Innovation Test Beds), representatives of a working party on mRNA vaccines at the European Directorate for the Quality of Medicines (EDQM) and members of international standardisation and pre-normative organisations (including CEN, ISO, ASTM, VAMAS). Two take-home message came out from the discussion. First, developing standard test methods and Reference Materials (RMs) for nanomedicines is a key priority for the European Commission and various stakeholders. Furthermore, there was a unanimous recognition of the need for a unified approach between standardisation committees, regulators and the nanomedicine community. At the USA, Canadian and European level, examples of success stories and of future initiative have been discussed. Future perspectives include the creation of a dedicated Working Group under CEN/TC 352 to consolidate efforts and develop a nanomedicine standardisation roadmap.

12.
J Control Release ; 367: 385-401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253203

RESUMEN

The availability of analytical methods for the characterization of lipid nanoparticles (LNPs) for in-vivo intracellular delivery of nucleic acids is critical for the fast development of innovative RNA therapies. In this study, analytical protocols to measure (i) chemical composition, (ii) drug loading, (iii) particle size, concentration, and stability as well as (iv) structure and morphology were evaluated and compared based on a comprehensive characterization strategy linking key physical and chemical properties to in-vitro efficacy and toxicity. Furthermore, the measurement protocols were assessed either by testing the reproducibility and robustness of the same technique in different laboratories, or by a correlative approach, comparing measurement results of the same attribute with orthogonal techniques. The characterization strategy and the analytical measurements described here will have an important role during formulation development and in determining robust quality attributes ultimately supporting the quality assessment of these innovative RNA therapeutics.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Reproducibilidad de los Resultados , Lípidos/química , ARN Interferente Pequeño/genética , Nanopartículas/química , Liposomas , Tamaño de la Partícula
13.
Small ; 9(3): 472-7, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23112137

RESUMEN

Interleukin 1 beta (IL-1ß)-dependent inflammatory disorders, such as rheumatoid arthritis and psoriasis, pose a serious medical burden worldwide, where patients face a lifetime of illness and treatment. Organogold compounds have been used since the 1930s to treat rheumatic and other IL-1ß-dependent diseases and, though their mechanisms of action are still unclear, there is evidence that gold interferes with the transmission of inflammatory signalling. Here we show for the first time that citrate-stabilized gold nanoparticles, in a size dependent manner, specifically downregulate cellular responses induced by IL-1ß both in vitro and in vivo. Our results indicate that the anti-inflammatory activity of gold nanoparticles is associated with an extracellular interaction with IL-1ß, thus opening potentially novel options for further therapeutic applications.


Asunto(s)
Oro/química , Interleucina-1beta/farmacología , Nanopartículas del Metal/química , Animales , Western Blotting , Caspasa 1/metabolismo , Línea Celular , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
14.
Nanomaterials (Basel) ; 13(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446425

RESUMEN

In the present study, we addressed the knowledge gaps regarding the agglomeration behavior and fate of food-grade titanium dioxide (E 171) in human gastrointestinal digestion (GID). After thorough multi-technique physicochemical characterization including TEM, single-particle ICP-MS (spICP-MS), CLS, VSSA determination and ELS, the GI fate of E 171 was studied by applying the in vitro GID approach established for the regulatory risk assessment of nanomaterials in Europe, using a standardized international protocol. GI fate was investigated in fasted conditions, relevant to E 171 use in food supplements and medicines, and in fed conditions, with both a model food and E 171-containing food samples. TiO2 constituent particles were resistant to GI dissolution, and thus, their stability in lysosomal fluid was investigated. The biopersistence of the material in lysosomal fluid highlighted its potential for bioaccumulation. For characterizing the agglomeration degree in the small intestinal phase, spICP-MS represented an ideal analytical tool to overcome the limitations of earlier studies. We demonstrated that, after simulated GID, in the small intestine, E 171 (at concentrations reflecting human exposure) is present with a dispersion degree similar to that obtained when dispersing the material in water by means of high-energy sonication (i.e., ≥70% of particles <250 nm).

15.
Food Chem ; 428: 136680, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37418880

RESUMEN

Quercetin-loaded nano-liposomes were prepared by high-pressure homogenization (HPH) at different pressures (up to 150 MPa) and number of passes (up to 3) to define the best processing conditions allowing the lowest particle size and the highest encapsulation efficiency (EE). The process at 150 MPa for 1 pass was the best, producing quercetin-loaded liposomes with the lowest particle size and 42% EE. Advanced techniques (multi-detector asymmetrical-flow field flow fractionation and analytical ultracentrifugation combined with transmission electron microscopy) were further used for the characterization of the liposomes which were oblong in shape (ca. 30 nm). Results highlight the need for several techniques to study nano-sized, polydisperse samples. The potential of quercetin-loaded liposomes against colon cancer cells was demonstrated. Results prove that HPH is an efficient and sustainable method for liposome preparation and highlight the remarkable role of process optimisation as well as the powerfulness of advanced methodologies for the characterisation of nano-structures.


Asunto(s)
Liposomas , Nanopartículas , Liposomas/química , Quercetina/química , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Nanopartículas/química
16.
Int J Pharm ; 637: 122905, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37003312

RESUMEN

A deep and detailed understanding of drug-dendrimer conjugates key properties is needed to define the critical quality attributes that affect drug product performance. The characterization must be executed both in the formulation media and in biological matrices. This, nevertheless, is challenging on account of a very limited number of suitable, established methods for characterizing the physicochemical properties, stability, and interaction with biological environment of complex drug-dendrimer conjugates. In order to fully characterize AZD0466, a drug-dendrimer conjugate currently under clinical development by AstraZeneca, a collaboration was initiated with the European Nanomedicine Characterisation Laboratory to deploy a state-of-the-art multi-step approach to measure physicochemical properties. An incremental complexity characterization approach was applied to two batches of AZD0466 and the corresponding dendrimer not carrying any drug, SPL-8984. Thus, the aim of this work is to guide in depth characterization efforts in the analysis of drug-dendrimer conjugates. Additionally, it serves to highlight the importance of using the adequate complementary techniques to measure physical and chemical stability in both simple and biological media, to drive a complex drug-dendrimer conjugate product from discovery to clinical development.


Asunto(s)
Dendrímeros , Dendrímeros/química , Nanomedicina/métodos
17.
Sci Immunol ; 8(81): eade0958, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36701425

RESUMEN

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , Animales , Ratones , SARS-CoV-2 , Epítopos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Pruebas de Neutralización
18.
Nano Lett ; 11(10): 4480-4, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21932791

RESUMEN

We measure the structural and stability changes of proteins at nanomolar concentration upon interaction with nanoparticles. Using synchrotron radiation circular dichroism (SRCD), we measure a decrease of 6 °C in the thermal unfolding of human serum albumin upon interaction with silver nanoparticles while this does not happen with gold. The use of SRCD allows measuring critical parameters on protein-nanoparticle interactions, and it will provide experimental data on the relative stability of key biological proteins for nanotoxicology.


Asunto(s)
Dicroismo Circular , Nanopartículas del Metal , Proteínas/química , Sincrotrones , Estructura Secundaria de Proteína , Electricidad Estática
19.
Nat Nanotechnol ; 17(6): 570-576, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35710950

RESUMEN

Several vaccines against COVID-19 use nanoparticles to protect the antigen cargo (either proteins or nucleic acids), increase the immunogenicity and ultimately the efficacy. The characterization of these nanomedicines is challenging due to their intrinsic complexity and requires the use of multidisciplinary techniques and competencies. The accurate characterization of nanovaccines can be conceptualized as a combination of physicochemical, immunological and toxicological assays. This will help to address key challenges in the preclinical characterization, will guide the rapid development of safe and effective vaccines for current and future health crises, and will streamline the regulatory process.


Asunto(s)
COVID-19 , Nanopartículas , Vacunas , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Humanos , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapéutico , Vacunas/química
20.
Nat Commun ; 13(1): 2670, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562366

RESUMEN

The recent emergence of the Omicron variant has raised concerns on vaccine efficacy and the urgent need to study more efficient vaccination strategies. Here we observed that an mRNA vaccine booster in individuals vaccinated with two doses of inactivated vaccine significantly increased the plasma level of specific antibodies that bind to the receptor-binding domain (RBD) or the spike (S) ectodomain (S1 + S2) of both the G614 and the Omicron variants, compared to two doses of homologous inactivated vaccine. The level of RBD- and S-specific IgG antibodies and virus neutralization titers against variants of concern in the heterologous vaccination group were similar to that in individuals receiving three doses of homologous mRNA-vaccine or a boost of mRNA vaccine after infection, but markedly higher than that in individuals receiving three doses of a homologous inactivated vaccine. This heterologous vaccination regime furthermore significantly enhanced the RBD-specific memory B cell response and S1-specific T cell response, compared to two or three doses of homologous inactivated vaccine. Our study demonstrates that mRNA vaccine booster in individuals vaccinated with inactivated vaccines can be highly beneficial, as it markedly increases the humoral and cellular immune responses against the virus, including the Omicron variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , ARN Mensajero/genética , SARS-CoV-2/genética , Vacunación , Vacunas de Productos Inactivados , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA