Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Monit Assess ; 193(10): 658, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533627

RESUMEN

Population monitoring is fundamental for informing management decisions aimed at reducing the rapid rate of global biodiversity decline. Herpetofauna are experiencing declines worldwide and include species that are challenging to monitor. Raw counts and associated metrics such as richness indices are common for monitoring populations of herpetofauna; however, these methods are susceptible to bias as they fail to account for varying detection probabilities. Our goal was to develop a program for efficiently monitoring herpetofauna in southern Texas. Our objectives were to (1) estimate detection probabilities in an occupancy modeling framework using trap arrays for a diverse group of herpetofauna and (2) to evaluate the relative effectiveness of funnel traps, pitfall traps, and cover boards. We collected data with 36 arrays at 2 study sites in 2015 and 2016, for 2105 array-days resulting in 4839 detections of 51 species. We modeled occupancy for 21 species and found support for the hypothesis that detection probability varied over our sampling duration for 10 species and with rainfall for 10 species. For herpetofauna in our study, we found 14 and 12 species were most efficiently captured with funnel traps and pitfall traps, respectively, and no species were most efficiently captured with cover boards. Our results show that using methods that do not account for variations in detection probability are highly subject to bias unless the likelihood of false absences is minimized with exceptionally long capture durations. For monitoring herpetofauna in southern Texas, we recommend using arrays with funnel and pitfall traps and an analytical method such as occupancy modeling that accounts for variation in detection.


Asunto(s)
Anfibios , Conservación de los Recursos Naturales , Animales , Biodiversidad , Monitoreo del Ambiente , Probabilidad
2.
Conserv Physiol ; 12(1): coae045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974502

RESUMEN

In the age of global climate change, extreme climatic events are expected to increase in frequency and severity. Animals will be forced to cope with these novel stressors in their environment. Glucocorticoids (i.e. 'stress' hormones) facilitate an animal's ability to cope with their environment. To date, most studies involving glucocorticoids focus on the immediate physiological effects of an environmental stressor on an individual, few studies have investigated the long-term physiological impacts of such stressors. Here, we tested the hypothesis that previous exposure to an environmental stressor will impart lasting consequences to an individual's glucocorticoid levels. In semi-arid environments, variable rainfall drives forage availability for herbivores. Reduced seasonal precipitation can present an extreme environmental stressor potentially imparting long-term impacts on an individual's glucocorticoid levels. We examined the effects of rainfall and environmental characteristics (i.e. soil and vegetation attributes) during fawn-rearing (i.e. summer) on subsequent glucocorticoid levels of female white-tailed deer (Odocoileus virginianus) in autumn. We captured 124 adult (≥2.5-year-old) female deer via aerial net-gunning during autumn of 2015, 2016 and 2021 across four populations spanning a gradient of environmental characteristics and rainfall in the semi-arid environment of South Texas, USA. We found for every 1 cm decrease in summer rainfall, faecal glucocorticoid levels in autumn increased 6.9%, but only in lactating females. Glucocorticoid levels in non-lactating, female deer were relatively insensitive to environmental conditions. Our study demonstrates the long-lasting effects of environmental stressors on an individual's glucocorticoid levels. A better understanding of the long-term effects stressors impart on an individual's glucocorticoid levels will help to evaluate the totality of the cost of a stressor to an individual's welfare and predict the consequences of future climate scenarios.

3.
Environ Manage ; 51(6): 1187-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23609307

RESUMEN

Given the popularity of feeding white-tailed deer (Odocoileus virginianus) in Texas and the increasing amount of corn that is distributed, more information is needed on the impacts of this activity on non-target wildlife. Our objectives were to report visitation, intra- and interspecific contact, and contact rates of wildlife at artificial feeding sites in Texas. Our study was conducted at three sites in Kleberg and Nueces counties, Texas. We trapped animals from February to April and August to September, 2009 and marked animals with passive integrated transponder (PIT) tags. At each site and season, we placed one feeder system containing a PIT tag reader within 600 m of trap locations. Readers detected PIT tags from a distance of 25 cm. We determined a contact event to occur when two different PIT tags were detected by feeder systems within 5 s. We recorded 62,719 passes by raccoons (Procyon lotor), 103,512 passes by collared peccaries (Pecari tajacu), 2,923 passes by feral swine (Sus scrofa), 1,336 passes by fox squirrels (Sciurus niger), and no passes by opossums (Didelphis virginiana) at feeder systems. For site-season combinations in which contact events occurred, we found intraspecific contact rates (contacts per day) for raccoons, collared peccaries, and feral swine to be 0.81-124.77, 0.69-38.08, and 0.0-0.66, respectively. Throughout our study we distributed ~2,625 kg of whole kernel corn, which resulted in 6,351 contact events between marked wildlife (2.4 contacts per kg of corn). If 136 million kg of corn is distributed in Texas annually, we would expect >5.2 billion unnatural contact events between wildlife would result from this activity each year in Texas. Consequently, we do not believe that it is wise for natural resource managers to maintain artificial feeding sites for white-tailed deer or other wildlife due to pathogen transmission risks.


Asunto(s)
Animales Salvajes , Conducta Animal , Conducta Alimentaria , Animales , Ambiente , Texas , Zea mays
4.
PLoS One ; 18(11): e0286393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033113

RESUMEN

Various landscape and environmental factors influence animal movement and habitat selection. Lunar illumination affects nocturnal visual perception of many species and, consequently, may influence animal activity and habitat selection. However, the effects of varying moon stage may differ across taxa. Prey species often reduce activity during highly visible periods of night while predators may increase activity or alter their habitat use. Ocelots (Leopardus pardalis) and bobcats (Lynx rufus), two nocturnal predatory felids that coexist in southern Texas, may also alter their behavior in response to the phase of the moon. To evaluate the effects of lunar phase on habitat selection of ocelots and bobcats, we executed a step selection analysis using high-frequency GPS-telemetry data collected on each species (ocelot, N = 8; bobcat, N = 13) in southern Texas during 2017-2021 and compared step length during new versus full moons. We predicted that ocelots would increase use of dense thornshrub to reduce their visibility during a full moon. However, as bobcats are habitat generalists and are more active during crepuscular periods, we predicted less influence of moon phase on activity. Ocelots did not alter habitat selection in response to lunar phase but moved shorter distances during full moon phases. Conversely, bobcats selected for greater vegetation cover during full moons, possibly to facilitate hunting during brighter periods, but exhibited no difference in movement across lunar phase. We provide, to our knowledge, the first example of habitat selection by predators in relation to lunar phase and show differences across new versus full moons by ocelots and bobcats such that ocelots alter step length but not habitat selection while bobcats altered habitat selection but not step length in response to shifting lunar phase. Further, we suggest the high potential for ocelot-vehicle collisions on darker nights due to increased movement by ocelots and poor visibility for drivers.


Asunto(s)
Felidae , Lynx , Animales , Luna , Lynx/fisiología , Movimiento , Ecosistema
5.
Sci Rep ; 13(1): 8882, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264027

RESUMEN

Habitat selection by animals is a complex, dynamic process that can vary across spatial and temporal scales. Understanding habitat selection is a vital component of managing endangered species. Ocelots (Leopardus pardalis), a medium-sized endangered felid, overlap in their northern range with bobcats (Lynx rufus) and coyotes (Canis latrans), with all three species sharing similar space and resource use. As the potential for competition between these three carnivores is high, understanding differences in habitat use and the effect of these potential competitors on habitat selection of ocelots is essential to conservation. Our objective was to compare habitat selection between species and examine if ocelots avoided areas used by competitors at broad and fine scales. We captured and collared 8 ocelots, 13 bobcats, and 5 coyotes on the East Foundation's El Sauz Ranch and the Yturria San Francisco Ranch in South Texas, USA from 2017 to 2021. We compared 2nd (position of home range) and 3rd (use within the home range) order selection across species and examined whether ocelots avoided areas categorized as high probability of use by bobcats and coyotes across both orders of selection. We found a preference for heterogeneous landscapes by bobcats and coyotes while ocelots were strongly tied to woody cover across both orders. At the 2nd order, ocelots selected areas with higher probability of use by bobcats and showed no response to higher probability of use by coyotes, suggesting ocelots did not avoid either species. However, at the 3rd order, ocelots avoided areas used by coyotes. Ocelots selected for areas of use by bobcats at the 2nd order and 3rd order. Results suggest that at the broader scale, placement of the home range is not affected by the presence of sympatric carnivores, however, at a finer scale, ocelots are avoiding coyotes but not bobcats. Our study emphasizes the importance of woody and herbaceous cover at the broad scale and dense vegetation at the finer scale to sustain ocelots. In addition, we show differing patterns of interspecific avoidance by ocelots across species and scales.


Asunto(s)
Carnívoros , Coyotes , Felidae , Lynx , Animales , Felidae/fisiología , Coyotes/fisiología , Ecosistema , Lynx/fisiología
6.
Ecol Evol ; 13(11): e10668, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920775

RESUMEN

Plant species richness is an important property of ecosystems that is altered by grazing. In a semiarid environment, we tested the hypotheses that (1) small-scale herbaceous plant species richness declines linearly with increasing grazing intensity by large ungulates, (2) precipitation and percent sand interact with grazing intensity, and (3) response of herbaceous plant species richness to increasing intensity of ungulate grazing varies with patch productivity. During January-March 2012, we randomly allocated 50, 1.5-m × 1.5-m grazing exclosures within each of six 2500 ha study sites across South Texas, USA. We counted the number of herbaceous plant species and harvested vegetation in 0.25-m2 plots within exclosures (ungrazed control plots) and in the grazed area outside the exclosures (grazed treatment plots) during October-November 2012-2019. We estimated percent use (grazing intensity) based on the difference in herbaceous plant standing crop between control plots and treatment plots. We selected the negative binomial regression model that best explained the relationship between grazing intensity and herbaceous plant species richness using the Schwarz-Bayesian information criterion. After accounting for the positive effect of precipitation and percent sand on herbaceous plant species richness, species richness/0.25 m2 increased slightly from 0% to 30% grazing intensity and then declined with increasing grazing intensity. Linear and quadratic responses of herbaceous plant species richness to increasing grazing intensity were greater for the least productive patches (<15.7 g/0.25 m2) than for productive patches (≥15.7 g/0.25 m2). Our results followed the pattern predicted by the intermediate disturbance hypothesis model for the effect of grazing intensity on small-scale herbaceous plant species richness.

7.
Ecol Evol ; 12(10): e9376, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36203632

RESUMEN

Net-wire fencing built to confine livestock is common on rangelands in the Southwestern USA, yet the impacts of livestock fencing on wildlife are largely unknown. Many wildlife species cross beneath fences at defined crossing locations because they prefer to crawl underneath rather than jump over fences. Animals occasionally become entangled jumping or climbing over fences, leading to injury or death. More commonly, repeated crossings under net-wire fencing by large animals lead to fence damage, though the damage is often tolerated by landowners until the openings affect the ability to enclose livestock. The usage, placement, characteristics, and passage rates of fence crossings beneath net-wire fencing are poorly understood. We monitored 20 randomly selected fence crossings on net-wire livestock fencing across two study sites on rangelands in South Texas, USA, from April 2018 to March 2019. We assessed the characteristics of fence-crossing locations (openings beneath the fence created by animals to aid in crossing) and quantified crossing rates and the probability of crossing by all species of animals via trail cameras. We documented 10,889 attempted crossing events, with 58% (n = 6271) successful. Overall, 15 species of medium- and large-size mammals and turkey (Meleagris gallopavo) contributed to crossing events. Crossing locations received 3-4 crossing attempts per day on average, but the number of attempts and probability of successful crossing varied by location and fence condition. The probability of crossing attempts was most consistently influenced by the opening size of the crossing and season; as crossing size (opening) increased, the probability of successful crossing significantly increased for all species. Peaks in crossing activity corresponded with species' daily and seasonal movements and activity. The density and size of fence-crossing locations were dependent on fence maintenance and not associated with vegetation communities or habitat variables. However, crossing locations were often re-established in the same locations after fence repairs. This is one of the few studies to monitor how all animal species present interacted with net-wire livestock fencing in rangelands. Our results will help land managers understand the impact of net-wire livestock fencing on animal movement.

8.
Ecol Evol ; 12(3): e8642, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35356557

RESUMEN

The jaguarundi (Puma yagouaroundi) is a small felid with a historical range from central Argentina through southern Texas. Information on the current distribution of this reclusive species is needed to inform recovery strategies in the United States where its last record was in 1986 in Texas. From 2003 to 2021, we conducted camera-trap surveys across southern Texas and northern Tamaulipas, México to survey for medium-sized wild cats (i.e., ocelots [Leopardus pardalis], bobcats [Lynx rufus], and jaguarundi). After 350,366 trap nights at 685 camera sites, we did not detect jaguarundis at 16 properties or along 2 highways (1050 km2) in Texas. However, we recorded 126 jaguarundi photographic detections in 15,784 trap nights on 2 properties (125.3 km2) in the northern Sierra of Tamaulipas, Tamaulipas, México. On these properties, latency to detection was 72 trap nights, with a 0.05 probability of detection per day and 0.73 photographic event rate every 100 trap nights. Due to a lack of confirmed class I sightings (e.g., specimen, photograph) in the 18 years of this study, and no other class I observations since 1986 in the United States, we conclude that the jaguarundi is likely extirpated from the United States. Based on survey effort and results from México, we would have expected to detect jaguarundis over the course of the study if still extant in Texas. We recommend that state and federal agencies consider jaguarundis as extirpated from the United States and initiate recovery actions as mandated in the federal jaguarundi recovery plan. These recovery actions include identification of suitable habitat in Texas, identification of robust populations in México, and re-introduction of the jaguarundi to Texas.

9.
Animals (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445721

RESUMEN

Wild pigs (Sus scrofa) alter ecosystems, affect the economy, and carry diseases that can be transmitted to livestock, humans, and wildlife. Understanding wild pig movements and population structure data, including natural population boundaries and dispersal, may potentially increase the efficiency and effectiveness of management actions. We trapped, conducted aerial shootings, and hunted wild pigs from 2005 to 2009 in southern Texas. We used microsatellites to assist large-scale applied management. We quantify broad-scale population structure among 24 sites across southern Texas by computing an overall Fst value, and a Bayesian clustering algorithm both with and without considering the spatial location of samples. At a broad geographic scale, pig populations displayed a moderate degree of genetic structure (Fst = 0.11). The best partition for number of populations, based on 2nd order rate of change of the likelihood distribution, was K = 10 genetic clusters. The spatially explicit Bayesian clustering algorithm produced similar results, with minor differences in designation of admixed sites. We found evidence of past (and possibly ongoing) translocations; many populations were admixed. Our original goal was to identify landscape features, such as barriers or dispersal corridors, that could be used to aid management. Unfortunately, the extensive admixture among clusters made this impossible. This research shows that large-scale management of wild pigs may be necessary to achieve control and ameliorate damages. Reduction or cessation of translocations is necessary to prevent human-mediated dispersion of wild pigs.

10.
Animals (Basel) ; 11(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071958

RESUMEN

Strategic control and eradication programs for wild pigs (Sus scrofa) are being developed to help curtail the expanding populations of this invasive, alien species. Drop nets and corral traps have a long history of capturing a multitude of wildlife species, so we evaluated the effectiveness and efficiency of these traps for controlling wild pigs in southern Oklahoma. We also developed and evaluated a suspended metal trap that provided real-time monitoring and deployment to capture animals. Effectiveness of each trap type was estimated as the proportion of pigs removed from the total population, whereas efficiency was calculated based on catch per unit effort (CPUE) (i.e., the number of person hours per pig removal). During 3 years of study (2010-2012), we removed 601 pigs, 296 using drop nets, 60 using corral traps, and 245 using suspended traps. Suspended traps removed 88.1% of the estimated population, whereas drop nets removed 85.7% and corral traps removed 48.5%. CPUE was 0.64 person hours/pig using suspended traps followed by 1.9 person hours/pig for drop nets and 2.3 person hours/pig for corral traps. Drop nets and suspended traps were more effective at removing a large proportion of the population (>85%), mainly through whole sounder removal, but the suspended trap with real-time notifications was the most efficient trap type, requiring fewer person hours to operate.

11.
Ecol Evol ; 10(11): 4903-4917, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32551069

RESUMEN

Interspecific competition among carnivores has been linked to differences in behavior, morphology, and resource use. Insights into these interactions can enhance understanding of local ecological processes that can have impacts on the recovery of endangered species, such as the ocelot (Leopardus pardalis). Ocelots, bobcats (Lynx rufus), and coyotes (Canis latrans) share a small geographic range overlap from South Texas to south-central Mexico but relationships among the three are poorly understood. From May 2011 to March 2018, we conducted a camera trap study to examine co-occurrence patterns among ocelots, bobcats, and coyotes on the East Foundation's El Sauz Ranch in South Texas. We used a novel multiseason extension to multispecies occupancy models with ≥2 interacting species to conduct an exploratory analysis to examine interspecific interactions and examine the potential effects of patch-level and landscape-level metrics relative to the occurrence of these carnivores. We found strong evidence of seasonal mutual coexistence among all three species and observed a species-specific seasonal trend in detection. Seasonal coexistence patterns were also explained by increasing distance from a high-speed roadway. However, these results have important ecological implications for planning ocelot recovery in the rangelands of South Texas. This study suggests a coexistence among ocelots, bobcats, and coyotes under the environmental conditions on the El Sauz Ranch. Further research would provide a better understanding of the ecological mechanisms that facilitate coexistence within this community. As road networks in the region expand over the next few decades, large private working ranches will be needed to provide important habitat for ocelots and other carnivore species.

12.
PLoS One ; 15(4): e0231732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32324759

RESUMEN

Sympatric ocelots (Leopardus pardalis) and bobcats (Lynx rufus) in South Texas show substantial overlap in body size, food habits, and habitat use. Consequently, we explore whether temporal niche partitioning may explain ocelot and bobcat coexistence. We investigated the influence of sun angle, lunar illumination, and maximum diurnal temperature on temporal movement rates of sympatric ocelots (n = 8) and bobcats (n = 6) using a combination of high-frequency GPS locations and bi-axial accelerometer data. We demonstrated that accelerometer data could be used to predict movement rates, providing a nearly continuous measure of animal activity and supplementing GPS locations. Ocelots showed a strong nocturnal activity pattern with the highest movement rates at night whereas bobcats showed a crepuscular activity pattern with the highest movement rates occurring around sunrise and sunset. Although bobcat activity levels were lower during the day, bobcat diurnal activity was higher than ocelot diurnal activity. During warmer months, bobcats were more active on nights with high levels of lunar illumination. In contrast, ocelots showed the highest nocturnal activity levels during periods of low lunar illumination. Ocelots showed reduced diurnal activity on hotter days. Our results indicate that ocelot and bobcat coexistence in South Texas can be partially explained by temporal niche partitioning, although both felids showed periods of overlapping activity during nocturnal and crepuscular periods.


Asunto(s)
Conducta Animal , Felidae/fisiología , Lynx/fisiología , Movimiento , Animales , Conducta Competitiva , Ecosistema , Luz , Luna , Sistema Solar , Temperatura , Texas
13.
J Wildl Dis ; 56(3): 588-596, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32065762

RESUMEN

White-tailed deer (Odocoileus virginianus) serve as a host for cattle fever ticks (Rhipicephalus [Boophilus] microplus and Rhipicephalus [Boophilus] annulatus; CFTs); therefore, deer are a concern for CFT control programs in southern Texas, US. Systemic (oral delivery of ivermectin) and topical (permethrin on pelage) treatment devices have been developed for white-tailed deer; however, the efficacy of these treatment options has not been determined for CFTs in southern Texas. Our objectives were to evaluate the effectiveness of CFT treatment strategies by 1) measuring exposure rates of deer to the acaricides permethrin and ivermectin, 2) determining the relationship between CFTs on deer and exposure to the acaricides, and 3) determining if photos from remote cameras at medicated bait sites can be used as a measure of acaricide treatment. We captured 327 deer at four sites in southern Texas. Deer visitation to medicated bait sites was monitored using remote cameras from March 2010 to February 2012. There was no relationship between the presence of permethrin and the probability of being infested with CFTs (P≥0.336). The probability of infestation with CFTs decreased as serum ivermectin levels increased for male (n=18, P=0.098) and female (n=33, P<0.001) deer. Our results indicate ivermectin may be more effective in treating CFTs than permethrin; thus it would be worthwhile to develop topical acaricides other than permethrin for treating white-tailed deer in southern Texas.


Asunto(s)
Ciervos/parasitología , Ivermectina/uso terapéutico , Permetrina/uso terapéutico , Rhipicephalus , Infestaciones por Garrapatas/veterinaria , Acaricidas/administración & dosificación , Acaricidas/uso terapéutico , Administración Oral , Animales , Antiparasitarios/administración & dosificación , Antiparasitarios/uso terapéutico , Femenino , Ivermectina/administración & dosificación , Masculino , Permetrina/administración & dosificación , Texas , Infestaciones por Garrapatas/tratamiento farmacológico , Infestaciones por Garrapatas/epidemiología
14.
J Wildl Dis ; 45(2): 422-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19395751

RESUMEN

Feral swine (Sus scrofa) are present in 38 of the 50 United States, and their populations continue to expand. Domestic swine are widely regarded as vulnerable to diseases harbored by feral swine. Our objectives were to determine antibody prevalence for selected pathogens in Texas feral swine populations and identify contact events between feral and domestic swine. Overall prevalence of antibodies against brucellosis and pseudorabies virus was 11% and 30%, respectively. Antibodies to porcine reproductive and respiratory disease virus were detected in 3% of feral swine from southern Texas. All samples tested negative for antibodies to classical swine fever virus. To determine the frequency of contact events between feral swine and domestic swine in neighboring facilities, we analyzed movement data from 37 adult feral swine that were trapped < or =10 km from domestic swine facilities and equipped with geographic positioning system collars. Seven of the 37 feral swine had contact (relocated within 100 m) with domestic swine. We found that contact between feral swine and domestic swine occurred predominantly at night. Additionally, we analyzed 60 consecutive days of experimental track plots around pens that contained domestic swine and empty control pens, and found greater visitation by feral swine to the domestic swine pens. Our data demonstrate that feral swine have direct contact with domestic swine, which presents opportunity for disease transmission.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Anticuerpos Antivirales/sangre , Transmisión de Enfermedad Infecciosa/veterinaria , Sus scrofa , Enfermedades de los Porcinos/transmisión , Sistemas de Identificación Animal , Animales , Animales Domésticos , Animales Salvajes , Brucelosis/sangre , Brucelosis/epidemiología , Brucelosis/transmisión , Brucelosis/veterinaria , Femenino , Sistemas de Información Geográfica , Masculino , Síndrome Respiratorio y de la Reproducción Porcina/sangre , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Síndrome Respiratorio y de la Reproducción Porcina/transmisión , Seudorrabia/sangre , Seudorrabia/epidemiología , Seudorrabia/transmisión , Porcinos , Enfermedades de los Porcinos/sangre , Enfermedades de los Porcinos/epidemiología , Texas/epidemiología
15.
Emerg Infect Dis ; 14(12): 1842-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19046505

RESUMEN

Raccoons (Procyon lotor) are common, widely distributed animals that frequently come into contact with wild waterfowl, agricultural operations, and humans. Serosurveys showed that raccoons are exposed to avian influenza virus. We found antibodies to a variety of influenza virus subtypes (H10N7, H4N6, H4N2, H3, and H1) with wide geographic variation in seroprevalence. Experimental infection studies showed that raccoons become infected with avian and human influenza A viruses, shed and transmit virus to virus-free animals, and seroconvert. Analyses of cellular receptors showed that raccoons have avian and human type receptors with a similar distribution as found in human respiratory tracts. The potential exists for co-infection of multiple subtypes of influenza virus with genetic reassortment and creation of novel strains of influenza virus. Experimental and field data indicate that raccoons may play an important role in influenza disease ecology and pose risks to agriculture and human health.


Asunto(s)
Animales Salvajes/virología , Anticuerpos Antivirales/sangre , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Mapaches/virología , Animales , Aves/virología , Humanos , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología
16.
J Wildl Dis ; 44(2): 362-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18436668

RESUMEN

Swine play an important role in the disease ecology of influenza. Having cellular receptors in common with birds and humans, swine provide opportunities for mixed infections and potential for genetic reassortment between avian, human, and porcine influenza. Feral swine populations are rapidly expanding in both numbers and range and are increasingly coming into contact with waterfowl, humans, and agricultural operations. In this study, over 875 feral swine were sampled from six states across the United States for serologic evidence of exposure to influenza. In Oklahoma, Florida, and Missouri, USA, no seropositive feral swine were detected. Seropositive swine were detected in California, Mississippi, and Texas, USA. Antibody prevalences in these states were 1% in Mississippi, 5% in California, and 14.4% in Texas. All seropositive swine were exposed to H3N2 subtype, the predominant subtype currently circulating in domestic swine. The only exceptions were in San Saba County, Texas, where of the 15 seropositive samples, four were positive for H1N1 and seven for both H1N1 and H3N2. In Texas, there was large geographical and temporal variation in antibody prevalence and no obvious connection to domestic swine operations. No evidence of exposure to avian influenza in feral swine was uncovered. From these results it is apparent that influenza in feral swine poses a risk primarily to swine production operations. However, because feral swine share habitat with waterfowl, prey on and scavenge dead and dying birds, are highly mobile, and are increasingly coming into contact with humans, the potential for these animals to become infected with avian or human influenza in addition to swine influenza is a distinct possibility.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Sus scrofa/virología , Enfermedades de los Porcinos/epidemiología , Animales , Animales Salvajes/virología , Reservorios de Enfermedades/veterinaria , Femenino , Humanos , Masculino , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Estudios Seroepidemiológicos , Enfermedades de los Porcinos/transmisión , Estados Unidos/epidemiología , Zoonosis
17.
J Wildl Dis ; 43(3): 485-91, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17699086

RESUMEN

Within the domestic swine industry there is growing trepidation about the role feral swine (Sus scrofa) play in the maintenance and transmission of important swine diseases. Innovative disease management tools for feral swine are needed. We used field trials conducted in southern Texas from February to March 2006 to compare species-specific visitation and removal rates of fish-flavored and vegetable-flavored baits with and without commercially available raccoon (Procyon lotor) repellent (trial 1) and removal rates of baits deployed in a systematic and cluster arrangement (trial 2). During trial 1, 1) cumulative bait removal rates after four nights ranged from 93% to 98%; 2) bait removal rates by feral swine, raccoons, and collared peccaries (Pecari tajacu) did not differ by treatment; and 3) coyotes (Canis latrans) removed more fish-flavored baits without raccoon repellent and white-tailed deer removed more vegetable-flavored baits without raccoon repellent than expected. During trial 2, feral swine removed fish-flavored baits distributed in a cluster arrangement (eight baits within 5 m2) at a rate greater than expected. Our observed bait removal rates illustrate bait attractiveness to feral swine. However, the diverse assemblage of omnivores in the United States compared with Australia where the baits were manufactured adds complexity to the development of a feral swine-specific baiting system for pharmaceutical delivery.


Asunto(s)
Carnívoros , Sistemas de Liberación de Medicamentos/veterinaria , Aromatizantes/administración & dosificación , Sus scrofa , Administración Oral , Animales , Animales Salvajes , Análisis por Conglomerados , Coyotes , Sistemas de Liberación de Medicamentos/métodos , Mapaches , Especificidad de la Especie , Porcinos , Estados Unidos , Vacunación/métodos , Vacunación/veterinaria
18.
Int J Parasitol Parasites Wildl ; 6(2): 100-107, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28580297

RESUMEN

Cattle fever ticks (CFT), vectors of bovine babesiosis and anaplasmosis, were eradicated from the United States by 1943, but are frequently reintroduced from neighboring border states of Mexico via stray cattle and wildlife hosts including white-tailed deer (Odocoileus virginianus) (WTD) and nilgai antelope (Boselaphus tragocamelus). Nilgai antelope are exotic bovids from India that are hosts of CFT, have large home ranges as compared to WTD, thus have the potential to spread CFT through the landscape. Currently, there are no methods to control CFT on nilgai. Odor lures were evaluated to determine if nilgai could be attracted to a central point for development of control methods. Four treatments, nilgai offal a natural odor lure was used as the positive control; and compared to three artificial odors; screw worm lure, volatile fatty acids, citronella oil. Studies were conducted on a free-ranging population of nilgai at the East Foundation's Santa Rosa Ranch (Kenedy Co., near Riviera, Texas, USA). Game cameras were used to document visitation to the lures. In the ten randomly placed transects, 110 nilgai and 104 WTD were photographed. Offal had significantly more visits by nilgai (71% of total visits) than screwworm (15%), VFA (11%), and citronella (4%). For WTD, there was no significant difference in visitation at the lure treatments.

19.
Prev Vet Med ; 146: 166-172, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992923

RESUMEN

Wildlife, both native and introduced, can harbor and spread diseases of importance to the livestock industry. Describing movement patterns of such wildlife is essential to formulate effective disease management strategies. Nilgai antelope (Boselaphus tragocamelus) are a free-ranging, introduced ungulate in southern Texas known to carry cattle fever ticks (CFT, Rhipicephalus (Boophilus) microplus, R. (B.) annulatus). CFT are the vector for the etiological agent of bovine babesiosis, a lethal disease causing high mortality in susceptible Bos taurus populations and severely affecting the beef cattle industry. Efforts to eradicate CFT from the United States have been successful. However, a permanent quarantine area is maintained between Texas and Mexico to check its entry from infested areas of neighboring Mexico states on wildlife and stray cattle. In recent years, there has been an increase in CFT infestations outside of the permanent quarantine area in Texas. Nilgai are of interest in understanding how CFT may be spread through the landscape. Thirty nilgai of both sexes were captured and fitted with satellite radio collars in South Texas to gain information about movement patterns, response to disturbances, and movement barriers. Median annual home range sizes were highly variable in males (4665ha, range=571-20,809) and females (1606ha, range=848-29,909). Female movement patterns appeared to be seasonal with peaks during June-August; these peaks appeared to be a function of break-ups in female social groups rather than environmental conditions. Nilgai, which reportedly are sensitive to disturbance, were more likely to relocate into new areas immediately after being captured versus four other types of helicopter activities. Nilgai did not cross 1.25m high cattle fences parallel to paved highways but did cross other fence types. Results indicate that females have a higher chance of spreading CFT through the landscape than males, but spread of CFT may be mitigated via maintenance of cattle fences running parallel with paved highways. Our results highlight the importance of documenting species-specific behavior in wildlife-livestock interfaces that can be used to develop effective disease management strategies in the United States and worldwide.


Asunto(s)
Antílopes/parasitología , Babesiosis/transmisión , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/transmisión , Animales , Animales Salvajes , Babesia/microbiología , Babesiosis/prevención & control , Bovinos , Enfermedades de los Bovinos/prevención & control , Control de Enfermedades Transmisibles/métodos , Femenino , Sistemas de Información Geográfica , Humanos , Masculino , México , Movimiento , Rhipicephalus , Estaciones del Año , Texas
20.
J Wildl Dis ; 53(1): 186-187, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27669010

RESUMEN

Serum samples from 18 axis deer ( Axis axis ) and 19 fallow deer ( Dama dama ) were analyzed with an enzyme-linked immunosorbent assay for Neospora caninum antibodies. Two axis (11%) and two fallow deer (11%) were positive for N. caninum antibodies.


Asunto(s)
Coccidiosis/veterinaria , Ciervos/parasitología , Neospora/aislamiento & purificación , Animales , Ensayo de Inmunoadsorción Enzimática , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA