Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Membr Biol ; 255(4-5): 537-551, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34792624

RESUMEN

Venom mixtures from insects, reptiles, and mollusks have long been a source of bioactive peptides which often have alternative uses as therapeutics. While these molecules act in numerous capacities, there have been many venom components that act on the target cells through membrane disruptive mechanisms. These peptides have long been of interest as potential antimicrobial peptide platforms, but the inherent cytotoxicity of venom peptides often results in poor therapeutic potential. Despite this, efforts are ongoing to identify and characterize venom peptide which exhibit high antimicrobial activity with low cytotoxicity and modify these to further enhance the efficacy while reducing toxicity. One example is ponericin L1 from Neoponera goeldii which has been demonstrated to have good antimicrobial activity and low in vitro cytotoxicity. The L1 sequence was modified by uniformly replacing the native hydrophobic residues with either Leu, Ile, Phe, Ala, or Val. Spectroscopic and microbiological approaches were employed to investigate how the amino acid sequence changes impacted membrane interaction, secondary structure, and antimicrobial efficacy. The L1 derivatives showed varying degrees of bilayer interaction, in some cases driven by bilayer composition. Several of the variants exhibited enhanced antimicrobial activity compared to the parent strain, while others lost all activity. Interestingly, the variant containing Val lost all antimicrobial activity and ability to interact with bilayers. Taken together the results indicate that peptide secondary structure, amino acid composition, and hydrophobicity all play a role in peptide activity, although this is a delicate balance that can result in non-specific binding or complete loss of activity if specific amino acids are incorporated.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Ponzoñas , Aminoácidos , Péptidos Antimicrobianos , Relación Estructura-Actividad , Interacciones Hidrofóbicas e Hidrofílicas , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología
2.
Langmuir ; 37(33): 9982-9995, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34378943

RESUMEN

Cationic amphiphilic polymers have been a platform to create new antimicrobial materials that act by disrupting bacterial cell membranes. While activity characterization and chemical optimization have been done in numerous studies, there remains a gap in our knowledge on the antimicrobial mechanisms of the polymers, which is needed to connect their chemical structures and biological activities. To that end, we used a single giant unilamellar vesicle (GUV) method to identify the membrane-disrupting mechanism of methacrylate random copolymers. The copolymers consist of random sequences of aminoethyl methacrylate and methyl (MMA) or butyl (BMA) methacrylate, with low molecular weights of 1600-2100 g·mol-1. GUVs consisting of an 8:2 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (POPG) and those with only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared to mimic the bacterial (Escherichia coli) or mammalian membranes, respectively. The disruption of bacteria and mammalian cell membrane-mimetic lipid bilayers in GUVs reflected the antimicrobial and hemolytic activities of the copolymers, suggesting that the copolymers act by disrupting cell membranes. The copolymer with BMA formed pores in the lipid bilayer, while that with MMA caused GUVs to burst. Therefore, we propose that the mechanism is inherent to the chemical identity or properties of hydrophobic groups. The copolymer with MMA showed characteristic sigmoid curves of the time course of GUV burst. We propose a new kinetic model with a positive feedback loop in the insertion of the polymer chains in the lipid bilayer. The novel finding of alkyl-dependent membrane-disrupting mechanisms will provide a new insight into the role of hydrophobic groups in the optimization strategy for antimicrobial activity and selectivity.


Asunto(s)
Antiinfecciosos , Fosfatidilcolinas , Animales , Membrana Dobles de Lípidos , Metacrilatos , Polímeros
3.
Molecules ; 26(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478102

RESUMEN

In the past decade, innovative protein therapies and bio-similar industries have grown rapidly. Additionally, ionic liquids (ILs) have been an area of great interest and rapid development in industrial processes over a similar timeline. Therefore, there is a pressing need to understand the structure and function of proteins in novel environments with ILs. Understanding the short-term and long-term stability of protein molecules in IL formulations will be key to using ILs for protein technologies. Similarly, ILs have been investigated as part of therapeutic delivery systems and implicated in numerous studies in which ILs impact the activity and/or stability of protein molecules. Notably, many of the proteins used in industrial applications are involved in redox chemistry, and thus often contain metal ions or metal-associated cofactors. In this review article, we focus on the current understanding of protein structure-function relationship in the presence of ILs, specifically focusing on the effect of ILs on metal containing proteins.


Asunto(s)
Líquidos Iónicos/farmacología , Metaloproteínas/química , Metaloproteínas/metabolismo , Relación Estructura-Actividad
4.
BMC Microbiol ; 18(1): 36, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669516

RESUMEN

BACKGROUND: An issue associated with efficient bioethanol production is the fact that the desired product is toxic to the biocatalyst. Among other effects, ethanol has previously been found to influence the membrane of E. coli in a dose-dependent manner and induce changes in the lipid composition of the plasma membrane. We describe here the characterization of a collection of ethanol-tolerant strains derived from the ethanologenic Escherichia coli strain FBR5. RESULTS: Membrane permeability assays indicate that many of the strains in the collection have alterations in membrane permeability and/or responsiveness of the membrane to environmental changes such as temperature shifts or ethanol exposure. However, analysis of the strains by gas chromatography and mass spectrometry revealed no qualitative changes in the acyl chain composition of membrane lipids in response to ethanol or temperature. To determine whether these strains contain any mutations that might contribute to ethanol tolerance or changes in membrane permeability, we sequenced the entire genome of each strain. Unexpectedly, none of the strains displayed mutations in genes known to control membrane lipid synthesis, and a few strains carried no mutations at all. Interestingly, we found that four independently-isolated strains acquired an identical C → A (V244 V) silent mutation in the ferric citrate transporter gene fecA. Further, we demonstrated that either a deletion of fecA or over-expression of fecA can confer increased ethanol survival, suggesting that any misregulation of fecA expression affects the cellular response to ethanol. CONCLUSIONS: The fact that no mutations were observed in several ethanol-tolerant strains suggested that epigenetic mechanisms play a role in E. coli ethanol tolerance and membrane permeability. Our data also represent the first direct phenotypic evidence that the fecA gene plays a role in ethanol tolerance. We propose that the recurring silent mutation may exert an effect on phenotype by altering RNA-mediated regulation of fecA expression.


Asunto(s)
Tolerancia a Medicamentos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/toxicidad , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mutación Silenciosa , Temperatura , Secuenciación Completa del Genoma
5.
Molecules ; 23(2)2018 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-29401708

RESUMEN

Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. The peptide C18G has been shown to be a selective, broad spectrum AMP with a net +8 cationic charge from seven lysine residues in the sequence. In this work, the cationic Lys residues were replaced with other natural or non-proteinogenic cationic amino acids: arginine, histidine, ornithine, or diaminopropionic acid. These changes vary in the structure of the amino acid side chain, the identity of the cationic moiety, and the pKa of the cationic group. Using a combination of spectroscopic and microbiological methods, the influence of these cationic groups on membrane binding, secondary structure, and antibacterial activity was investigated. The replacement of Lys with most other cationic residues had, at most, 2-fold effects on minimal inhibitory concentration against a variety of Gram-positive and Gram-negative bacteria. However, the peptide containing His as the cationic group showed dramatically reduced activity. All peptide variants retained the ability to bind lipid vesicles and showed clear preference for binding vesicles that contained anionic lipids. Similarly, all peptides adopted a helical conformation when bound to lipids or membrane mimetics, although the peptide containing diaminopropionic acid exhibited a decreased helicity. The peptides exhibited a wider variety of activity in the permeabilization of bacterial membranes, with peptides containing Lys, Arg, or Orn being the most broadly active. In all, the antibacterial activity of the C18G peptide is generally tolerant to changes in the structure and identity of the cationic amino acids, yielding new possibilities for design and development of AMPs that may be less susceptible to immune and bacterial recognition or in vivo degradation.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Arginina/química , Histidina/química , Lisina/química , Ornitina/química , Péptidos/química , Propionatos/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Humanos , Membranas Artificiales , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Unión Proteica , Electricidad Estática , Relación Estructura-Actividad
6.
Bioconjug Chem ; 28(5): 1340-1350, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28379682

RESUMEN

Synthetic polymers have been used as a molecular platform to develop host-defense antimicrobial peptide (AMP) mimetics which are effective in killing drug-resistant bacteria. In this topical review, we will discuss the AMP-mimetic design and chemical optimization strategies as well as the biological and biophysical implications of AMP mimicry by synthetic polymers. Traditionally, synthetic polymers have been used as a chemical means to replicate the chemical functionalities and physicochemical properties of AMPs (e.g., cationic charge, hydrophobicity) to recapitulate their mode of action. However, we propose a new perception that AMP-mimetic polymers are an inherently bioactive platform as whole molecules, which mimic more than the side chain functionalities of AMPs. The tunable nature and chemical simplicity of synthetic random polymers facilitate the development of potent, cost-effective, broad-spectrum antimicrobials. The polymer-based approach offers the potential for many antimicrobial applications to be used directly in solution or attached to surfaces to fight against drug-resistant bacteria.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Biomimética , Polímeros/síntesis química , Polímeros/farmacología
7.
Molecules ; 22(9)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880225

RESUMEN

This paper reports the synthesis and characterization of silver oxide films for use as bactericidal coatings. Synthesis parameters, dissolution/elution rate, and bactericidal efficacy are reported. Synthesis conditions were developed to create AgO, Ag2O, or mixtures of AgO and Ag2O on surfaces by reactive magnetron sputtering. The coatings demonstrate strong adhesion to many substrate materials and impede the growth of all bacterial strains tested. The coatings are effective in killing Escherichia coli and Staphylococcus aureus, demonstrating a clear zone-of-inhibition against bacteria growing on solid media and the ability to rapidly inhibit bacterial growth in planktonic culture. Additionally, the coatings exhibit very high elution of silver ions under conditions that mimic dynamic fluid flow ranging between 0.003 and 0.07 ppm/min depending on the media conditions. The elution of silver ions from the AgO/Ag2O surfaces was directly impacted by the complexity of the elution media, with a reduction in elution rate when examined in complex cell culture media. Both E. coli and S. aureus were shown to bind ~1 ppm Ag⁺/mL culture. The elution of Ag⁺ resulted in no increases in mammalian cell apoptosis after 24 h exposure compared to control, but apoptotic cells increased to ~35% by 48 and 72 h of exposure. Taken together, the AgO/Ag2O coatings described are effective in eliciting antibacterial activity and have potential for application on a wide variety of surfaces and devices.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Óxidos/química , Óxidos/farmacología , Compuestos de Plata/química , Compuestos de Plata/farmacología , Plata/química , Células 3T3 , Animales , Supervivencia Celular , Escherichia coli/efectos de los fármacos , Humanos , Iones/química , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
8.
Biopolymers ; 104(4): 384-394, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25670241

RESUMEN

Tryptophan (Trp) is a naturally occurring amino acid, which exhibits fluorescence emission properties that are dependent on the polarity of the local environment around the Trp side chain. However, this sensitivity also complicates interpretation of fluorescence emission data. A non-natural analogue of tryptophan, ß-(1-azulenyl)-L-alanine, exhibits fluorescence insensitive to local solvent polarity and does not impact the structure or characteristics of several peptides examined. In this study, we investigated the effect of replacing Trp with ß-(1-azulenyl)-L-alanine in the well-known bee-venom peptide melittin. This peptide provides a model framework for investigating the impact of replacing Trp with ß-(1-azulenyl)-L-alanine in a functional peptide system that undergoes significant shifts in Trp fluorescence emission upon binding to lipid bilayers. Microbiological methods including assessment of the antimicrobial activity by minimal inhibitory concentration (MIC) assays and bacterial membrane permeability assays indicated little difference between the Trp and the ß-(1-azulenyl)-L-alanine-substituted versions of melittin. Circular dichroism spectroscopy showed both that peptides adopted the expected α-helical structures when bound to phospholipid bilayers and electrophysiological analysis indicated that both created membrane disruptions leading to significant conductance increases across model membranes. Both peptides exhibited a marked protection of the respective fluorophores when bound to bilayers indicating a similar membrane-bound topology. As expected, while fluorescence quenching and CD indicate the peptides are stably bound to lipid vesicles, the peptide containing ß-(1-azulenyl)-L-alanine exhibited no fluorescence emission shift upon binding while the natural Trp exhibited >10 nm shift in emission spectrum barycenter. Taken together, the ß-(1-azulenyl)-L-alanine can serve as a solvent insensitive alternative to Trp that does not have significant impacts on structure or function of membrane interacting peptides.


Asunto(s)
Fluorescencia , Membrana Dobles de Lípidos/química , Meliteno , Triptófano , Meliteno/análogos & derivados , Meliteno/química , Estructura Secundaria de Proteína , Triptófano/análogos & derivados , Triptófano/química
9.
ACS Sens ; 9(2): 860-869, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38286995

RESUMEN

The development of novel methodologies that can detect biomarkers from cancer or other diseases is both a challenge and a need for clinical applications. This partly motivates efforts related to nanopore-based peptide sensing. Recent work has focused on the use of gold nanoparticles for selective detection of cysteine-containing peptides. Specifically, tiopronin-capped gold nanoparticles, trapped in the cis-side of a wild-type α-hemolysin nanopore, provide a suitable anchor for the attachment of cysteine-containing peptides. It was recently shown that the attachment of these peptides onto a nanoparticle yields unique current signatures that can be used to identify the peptide. In this article, we apply this technique to the detection of ovarian cancer marker peptides ranging in length from 8 to 23 amino acid residues. It is found that sequence variability complicates the detection of low-molecular-weight peptides (<10 amino acid residues), but higher-molecular-weight peptides yield complex, high-frequency current fluctuations. These fluctuations are characterized with chi-squared and autocorrelation analyses that yield significantly improved selectivity when compared to traditional open-pore analysis. We demonstrate that the technique is capable of detecting the only two cysteine-containing peptides from LRG-1, an emerging protein biomarker, that are uniquely present in the urine of ovarian cancer patients. We further demonstrate the detection of one of these LRG-1 peptides spiked into a sample of human female urine.


Asunto(s)
Nanopartículas del Metal , Nanoporos , Neoplasias Ováricas , Humanos , Femenino , Cisteína , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Neoplasias Ováricas/diagnóstico
10.
Microsyst Nanoeng ; 10(1): 125, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251609

RESUMEN

Over the last two decades, platinum group metals (PGMs) and their alloys have dominated as the materials of choice for electrodes in long-term implantable neurostimulation and cardiac rhythm management devices due to their superior conductivity, mechanical and chemical stability, biocompatibility, corrosion resistance, radiopacity, and electrochemical performance. Despite these benefits, PGM manufacturing processes are extremely costly, complex, and challenging with potential health hazards. Additionally, the volatility in PGM prices and their high supply risk, combined with their scarce concentration of approximately 0.01 ppm in the earth's upper crust and limited mining geographical areas, underscores their classification as critical raw materials, thus, their effective recovery or substitution worldwide is of paramount importance. Since postmortem recovery from deceased patients and/or refining of PGMs that are used in the manufacturing of the electrodes and microelectrode arrays is extremely rare, challenging, and highly costly, therefore, substitution of PGM-based electrodes with other biocompatible materials that can yield electrochemical performance values equal or greater than PGMs is the only viable and sustainable solution to reduce and ultimately substitute the use of PGMs in long-term implantable neurostimulation and cardiac rhythm management devices. In this article, we demonstrate for the first time how the novel technique of "reactive hierarchical surface restructuring" can be utilized on titanium-that is widely used in many non-stimulation medical device and implant applications-to manufacture biocompatible, low-cost, sustainable, and high-performing neurostimulation and cardiac rhythm management electrodes. We have shown how the surface of titanium electrodes with extremely poor electrochemical performance undergoes compositional and topographical transformations that result in electrodes with outstanding electrochemical performance.

11.
Antibiotics (Basel) ; 12(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37998826

RESUMEN

Antimicrobial resistance continues to be a major threat to world health, with the continued emergence of resistant bacterial strains. Antimicrobial peptides have emerged as an attractive option for the development of novel antimicrobial compounds in part due to their ubiquity in nature and the general lack of resistance development to this class of molecules. In this work, we analyzed the antimicrobial peptide C18G and several truncated forms for efficacy and the underlying mechanistic effects of the sequence truncation. The peptides were screened for antimicrobial efficacy against several standard laboratory strains, and further analyzed using fluorescence spectroscopy to evaluate binding to model lipid membranes and bilayer disruption. The results show a clear correlation between the length of the peptide and the antimicrobial efficacy. Furthermore, there is a correlation between peptide length and the hydrophobic thickness of the bilayer, indicating that hydrophobic mismatch is likely a contributing factor to the loss of efficacy in shorter peptides.

12.
Artículo en Inglés | MEDLINE | ID: mdl-36300561

RESUMEN

Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Polímeros/química , Biomimética , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
13.
Sci Rep ; 13(1): 19778, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957282

RESUMEN

Miniaturization and electrochemical performance enhancement of electrodes and microelectrode arrays in emerging long-term implantable neural stimulation devices improves specificity, functionality, and performance of these devices. However, surgical site and post-implantation infections are amongst the most devastating complications after surgical procedures and implantations. Additionally, with the increased use of antibiotics, the threat of antibiotic resistance is significant and is increasingly being recognized as a global problem. Therefore, the need for alternative strategies to eliminate post-implantation infections and reduce antibiotic use has led to the development of medical devices with antibacterial properties. In this work, we report on the development of electrochemically active antibacterial platinum-iridium electrodes targeted for use in neural stimulation and sensing applications. A two-step development process was used. Electrodes were first restructured using femtosecond laser hierarchical surface restructuring. In the second step of the process, atomic layer deposition was utilized to deposit conformal antibacterial copper oxide thin films on the hierarchical surface structure of the electrodes to impart antibacterial properties to the electrodes with minimal impact on electrochemical performance of the electrodes. Morphological, compositional, and structural properties of the electrodes were studied using multiple modalities of microscopy and spectroscopy. Antibacterial properties of the electrodes were also studied, particularly, the killing effect of the hierarchically restructured antibacterial electrodes on Escherichia coli and Staphylococcus aureus-two common types of bacteria responsible for implant infections.


Asunto(s)
Antibacterianos , Sistema Nervioso , Electrodos , Antibacterianos/farmacología , Antibacterianos/química , Microelectrodos , Miniaturización
14.
Biochem Biophys Rep ; 30: 101242, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35280523

RESUMEN

The thermal unfolding of the copper redox protein azurin was studied in the presence of four different dipeptide-based ionic liquids (ILs) utilizing tetramethylguanidinium as the cation. The four dipeptides have different sequences including the amino acids Ser and Asp: TMG-AspAsp, TMG-SerSer, TMG-SerAsp, and TMG-AspSer. Thermal unfolding curves generated from temperature-dependent fluorescence spectroscopy experiments showed that TMG-AspAsp and TMG-SerSer have minor destabilizing effects on the protein while TMG-AspSer and TMG-SerAsp strongly destabilize azurin. Red-shifted fluorescence signatures in the 25 °C correlate with the observed protein destabilization in the solutions with TMG-AspSer and TMG-SerAsp. These signals could correspond to interactions between the Asp residue in the dipeptide and the azurin Trp residue in the unfolded state. These results, supported by appropriate control experiments, suggest that dipeptide sequence-specific interactions lead to selective protein destabilization and motivate further studies of TMG-dipeptide ILs.

15.
ACS Nano ; 16(10): 17229-17241, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36214366

RESUMEN

It was recently demonstrated that one can monitor ligand-induced structure fluctuations of individual thiolate-capped gold nanoclusters using resistive-pulse nanopore sensing. The magnitude of the fluctuations scales with the size of the capping ligand, and it was later shown one can observe ligand exchange in this nanopore setup. We expand on these results by exploring the different types of current fluctuations associated with peptide ligands attaching to tiopronin-capped gold nanoclusters. We show here that the fluctuations can be used to identify the attaching peptide through either the magnitude of the peptide-induced current jumps or the onset of high-frequency current fluctuations. Importantly, the peptide attachment process requires that the peptide contains a cysteine residue. This suggests that nanopore-based monitoring of peptide attachments with thiolate-capped clusters could provide a means for selective detection of cysteine-containing peptides. Finally, we demonstrate the cluster-based protocol with various peptide mixtures to show that one can identify more than one cysteine-containing peptide in a mixture.


Asunto(s)
Nanoporos , Ligandos , Cisteína , Tiopronina , Oro/química , Péptidos
16.
Antimicrob Agents Chemother ; 55(11): 5043-53, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21844313

RESUMEN

Small arylamide foldamers designed to mimic the amphiphilic nature of antimicrobial peptides (AMPs) have shown potent bactericidal activity against both Gram-negative and Gram-positive strains without many of the drawbacks of natural AMPs. These foldamers were shown to cause large changes in the permeability of the outer membrane of Escherichia coli. They cause more limited permeabilization of the inner membrane which reaches critical levels corresponding with the time required to bring about bacterial cell death. Transcriptional profiling of E. coli treated with sublethal concentrations of the arylamides showed induction of genes related to membrane and oxidative stresses, with some overlap with the effects observed for polymyxin B. Protein secretion into the periplasm and the outer membrane is also compromised, possibly contributing to the lethality of the arylamide compounds. The induction of membrane stress response regulons such as rcs coupled with morphological changes at the membrane observed by electron microscopy suggests that the activity of the arylamides at the membrane represents a significant contribution to their mechanism of action.


Asunto(s)
Amidas/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Biomater Sci ; 9(8): 2758-2767, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33599647

RESUMEN

As we are on the cusp of the "post-antibiotic" era due to rapid spread of drug resistant bacteria, there is an urgent need for new antimicrobials that are not susceptible to bacterial resistance mechanisms. In this review, we will discuss the recent development of "polymer therapeutics" with antimicrobial activity. Learning from host-defence peptides, we propose the biomimetic design of synthetic polymers to target bacterial cell membranes, which act by compromising the membrane integrity. The discussion is extended to the future challenges and opportunities of antimicrobial polymers for clinical applications.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Polímeros
18.
Biophys Rev (Melville) ; 2(1): 011301, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505398

RESUMEN

The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.

19.
Probiotics Antimicrob Proteins ; 13(2): 527-541, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32889698

RESUMEN

Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules through evolution. The peptides are known to selectively bind to bacterial cell surfaces through electrostatic interactions, and subsequently, the peptides insert into the cell membrane and cause local disruptions of membrane integrity leading to cell death. Previous experiments showed that replacing the Leu residues in the AMP C18G with other naturally occurring hydrophobic residues resulted in side-chain-dependent activities. This work extends the investigation to non-natural hydrophobic amino acids and the effect on peptide activity. Minimal inhibitory concentration (MIC) results demonstrated that amino acid substitutions containing long flexible carbon chains maintained or increased antimicrobial activity compared to natural analogues. In solution, the peptide showed aggregation only with the most hydrophobic non-natural amino acid substitutions. Binding assays using Trp fluorescence confirm a binding preference for anionic lipids while quenching experiments demonstrated that the more hydrophobic peptides are more deeply buried in the anionic lipid bilayers compared to the zwitterionic bilayers. The most effective peptides at killing bacteria were also those which showed some level of disruption of bacterial membranes; however, one peptide sequence exhibited very strong activity and very low levels of red blood cell hemolysis, yielding a promising target for future development.


Asunto(s)
Aminoácidos , Péptidos Antimicrobianos , Aminoácidos/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología
20.
Protein Pept Lett ; 28(4): 388-402, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32798369

RESUMEN

BACKGROUND: Antimicrobial Peptides (AMPs) are an attractive alternative to traditional small molecule antibiotics as AMPs typically target the bacterial cell membrane. A Trp-rich peptide sequence derived from water buffalo (Bubalus bubalis), BuCATHL4B was previously identified as a broad-spectrum antimicrobial peptide. OBJECTIVE: In this work, native Trp residues were replaced with other naturally occurring aromatic amino acids to begin to elucidate the importance of these residues on peptide activity. METHODS: Minimal Inhibitory Concentration (MIC) results demonstrated activity against seven strains of bacteria. Membrane and bilayer permeabilization assays were performed to address the role of bilayer disruption in the activity of the peptides. Lipid vesicle binding and quenching experiments were also performed to gain an understanding of how the peptides interacted with lipid bilayers. RESULTS: MIC results indicate the original, tryptophan-rich sequence, and the phenylalanine substituted sequences exhibit strong inhibition of bacterial growth. In permeabilization assays, peptides with phenylalanine substitutions have higher levels of membrane permeabilization than those substituted with tyrosine. In addition, one of the two-tyrosine substituted sequence, YWY, behaves most differently in the lowest antimicrobial activity, showing no permeabilization of bacterial membranes. Notably the antimicrobial activity is inherently species dependent, with varying levels of activity against different bacteria. CONCLUSION: There appears to be little correlation between membrane permeabilization and activity, indicating these peptides may have additional mechanisms of action beyond membrane disruption. The results also identify two sequences, denoted FFF and YYW, which retain antibacterial activity but have markedly reduced hemolytic activity.


Asunto(s)
Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos , Bacterias/crecimiento & desarrollo , Triptófano/química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Dobles de Lípidos/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA