Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 296: 100386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33556374

RESUMEN

The trophectoderm layer of the blastocyst-stage embryo is the precursor for all trophoblast cells in the placenta. Human trophoblast stem (TS) cells have emerged as an attractive tool for studies on early trophoblast development. However, the use of TS cell models is constrained by the limited genetic diversity of existing TS cell lines and restrictions on using human fetal tissue or embryos needed to generate additional lines. Here we report the derivation of two distinct stem cell types of the trophectoderm lineage from human pluripotent stem cells. Analogous to villous cytotrophoblasts in vivo, the first is a CDX2- stem cell comparable with placenta-derived TS cells-they both exhibit identical expression of key markers, are maintained in culture and differentiate under similar conditions, and share high transcriptome similarity. The second is a CDX2+ stem cell with distinct cell culture requirements, and differences in gene expression and differentiation, relative to CDX2- stem cells. Derivation of TS cells from pluripotent stem cells will significantly enable construction of in vitro models for normal and pathological placental development.


Asunto(s)
Factor de Transcripción CDX2/metabolismo , Células Madre Embrionarias/citología , Placenta/citología , Células Madre Pluripotentes/citología , Trofoblastos/citología , Técnicas de Cultivo de Célula , Diferenciación Celular , Linaje de la Célula , Medios de Cultivo , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Placenta/metabolismo , Células Madre Pluripotentes/metabolismo , Embarazo , Trofoblastos/metabolismo
2.
Environ Sci Technol ; 56(23): 17131-17142, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399130

RESUMEN

The prevalence of wildfires continues to grow globally with exposures resulting in increased disease risk. Characterizing these health risks remains difficult due to the wide landscape of exposures that can result from different burn conditions and fuel types. This study tested the hypothesis that biomass smoke exposures from variable fuels and combustion conditions group together based on similar transcriptional response profiles, informing which wildfire-relevant exposures may be considered as a group for health risk evaluations. Mice (female CD-1) were exposed via oropharyngeal aspiration to equal mass biomass smoke condensates produced from flaming or smoldering burns of eucalyptus, peat, pine, pine needles, or red oak species. Lung transcriptomic signatures were used to calculate transcriptomic similarity scores across exposures, which informed exposure groupings. Exposures from flaming peat, flaming eucalyptus, and smoldering eucalyptus induced the greatest responses, with flaming peat grouping with the pro-inflammatory agent lipopolysaccharide. Smoldering red oak and smoldering peat induced the least transcriptomic response. Groupings paralleled pulmonary toxicity markers, though they were better substantiated by higher data dimensionality and resolution provided through -omic-based evaluation. Interestingly, groupings based on smoke chemistry signatures differed from transcriptomic/toxicity-based groupings. Wildfire-relevant exposure groupings yield insights into risk assessment strategies to ultimately protect public health.


Asunto(s)
Incendios Forestales , Femenino , Ratones , Animales , Biomasa , Transcriptoma , Humo/efectos adversos , Humo/análisis , Suelo
4.
Environ Mol Mutagen ; 64(1): 50-66, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502378

RESUMEN

Exposure to environmental chemicals is now well recognized as a significant factor contributing to the global burden of disease; however, there remain critical gaps in understanding the types of biological mechanisms that link environmental chemicals to adverse health outcomes. One type of mechanism that remains understudied involves extracellular vesicles (EVs), representing small cell-derived particles capable of carrying molecular signals such as RNAs, miRNAs, proteins, lipids, and chemicals through biological fluids and imparting beneficial, neutral, or negative effects on target cells. In fact, evidence is just now starting to grow that supports the role of EVs in various disease etiologies. This review aims to (1) Provide a landscape of the current understanding of the functional relationship between EVs and environmental chemicals; (2) Summarize current knowledge of EV regulatory processes including production, packaging, and release; and (3) Conduct a database-driven analysis of known chemical-gene interactions to predict and prioritize environmentally relevant chemicals that may impact EV regulatory genes and thus EV regulatory processes. This approach to predicting environmentally relevant chemicals that may alter EVs provides a novel method for evidence-based hypothesis generation for future studies evaluating the link between environmental exposures and EVs.


Asunto(s)
Vesículas Extracelulares , MicroARNs , MicroARNs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Proteínas/metabolismo
5.
iScience ; 26(11): 108162, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37920665

RESUMEN

Extracellular vesicle (EV)-mediated intercellular communication significantly influences pulmonary cell health and disease, yet in vitro methods to investigate these mechanisms are limited. We hypothesize that organotypic models of the airway can be leveraged to investigate EV-mediated intercellular signaling, focusing on EV proteomic content as a case study. Two in vitro airway culture models were evaluated by mass spectrometry-based proteomics analysis: a tri-culture model consisting of alveolar epithelial, fibroblast, and lung microvascular endothelial cells and a co-culture model of alveolar epithelial and fibroblasts. EVs isolated from the tri-culture model were enriched with EV proteins regulating RNA-to-protein translation. EVs isolated from the co-culture model were enriched with EV biogenesis and extracellular matrix signaling proteins. These model-specific differences suggest that different pulmonary cell types uniquely affect EV composition and the biological pathways influenced by the EV proteome in recipient cells. These findings can inform future studies surrounding EV-related pulmonary disease pathogenesis and therapeutics.

6.
Toxicol Sci ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851381

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have emerged as high priority contaminants due to their ubiquity and pervasiveness in the environment. Numerous PFAS co-occur across sources of drinking water, including areas of North Carolina (NC) with some detected concentrations above the Environmental Protection Agency's health advisory levels. While evidence demonstrates PFAS exposure induces harmful effects in the liver, the involvement of extracellular vesicles (EVs) as potential mediators of these effects has yet to be evaluated. This study set out to evaluate the hypothesis that PFAS mixtures induce dose-dependent release of EVs from liver cells, with exposures causing differential loading of microRNAs (miRNAs) and PFAS chemical signatures. To test this hypothesis, a defined PFAS mixture was prioritized utilizing data collected by the NC PFAS Testing Network. This mixture contained three substances, PFOS, PFOA, and PFHxA, selected based upon co-occurrence patterns and the inclusion of both short-chain (PFHxA) and long-chain (PFOA and PFOS) substances. HepG2 liver cells were exposed to equimolar PFAS, and secreted EVs were isolated from conditioned media and characterized for count and molecular content. Exposures induced a dose-dependent release of EVs carrying miRNAs that were differentially loaded upon exposure. These altered miRNA signatures were predicted to target mRNA pathways involved in hepatic fibrosis and cancer. Chemical concentrations of PFOS, PFOA, and PFHxA were also detected in both parent HepG2 cells and their released EVs, specifically within a 15-fold range after normalizing for protein content. This study therefore established EVs as novel biological responders and measurable endpoints for evaluating PFAS-induced toxicity.

7.
Toxics ; 10(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35622613

RESUMEN

There are thousands of chemicals that humans can be exposed to in their everyday environments, the majority of which are currently understudied and lack substantial testing for potential exposure and toxicity. This study aimed to implement in silico methods to characterize the chemicals that co-occur across chemical and product uses in our everyday household environments that also target a common molecular mediator, thus representing understudied mixtures that may exacerbate toxicity in humans. To detail, the Chemical and Products Database (CPDat) was queried to identify which chemicals co-occur across common exposure sources. Chemicals were preselected to include those that target an important mediator of cell health and toxicity, the peroxisome proliferator activated receptor gamma (PPARγ), in liver cells that were identified through query of the ToxCast/Tox21 database. These co-occurring chemicals were thus hypothesized to exert potential joint effects on PPARγ. To test this hypothesis, five commonly co-occurring chemicals (namely, benzyl cinnamate, butyl paraben, decanoic acid, eugenol, and sodium dodecyl sulfate) were tested individually and in combination for changes in the expression of PPARγ and its downstream target, insulin receptor (INSR), in human liver HepG2 cells. Results showed that these likely co-occurring chemicals in household environments increased both PPARγ and INSR expression more significantly when the exposures occurred as mixtures vs. as individual chemicals. Future studies will evaluate such chemical combinations across more doses, allowing for further quantification of the types of joint action while leveraging this method of chemical combination prioritization. This study demonstrates the utility of in silico-based methods to identify chemicals that co-occur in the environment for mixtures toxicity testing and highlights relationships between understudied chemicals and changes in PPARγ-associated signaling.

8.
Toxicol In Vitro ; 83: 105412, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35688329

RESUMEN

The liver is a pivotal organ regulating critical developmental stages of fetal metabolism and detoxification. Though numerous studies have evaluated links between prenatal/perinatal exposures and adverse health outcomes in the developing fetus, the central role of liver to health disruptions resulting from these exposures remains understudied, especially concerning early development and later-in-life health outcomes. While numerous in vitro methods for evaluating liver toxicity have been established, the use of iPSC-derived hepatocytes appears to be particularly well suited to contribute to this critical research gap due to their potential to model a diverse range of disease phenotypes and different stages of liver development. The following key aspects are reviewed: (1) an introduction to developmental liver toxicity; (2) an introduction to embryonic and induced pluripotent stem cell models; (3) methods and challenges for deriving liver cells from stem cells; and (4) applications for iPSC-derived hepatocytes to evaluate liver developmental stages and their associated responses to insults. We conclude that iPSC-derived hepatocytes have great potential for informing liver toxicity and underlying disease mechanisms via the generation of patient-specific iPSCs; implementing large-scale drug and chemical screening; evaluating general biological responses as a potential surrogate target cell; and evaluating inter-individual disease susceptibility and response variability.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Femenino , Hepatocitos/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Embarazo
9.
J Expo Sci Environ Epidemiol ; 32(5): 647-659, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35217808

RESUMEN

Extracellular vesicles (EVs) represent small, membrane-enclosed particles that are derived from parent cells and are secreted into the extracellular space. Once secreted, EVs can then travel and communicate with nearby or distant cells. Due to their inherent stability and biocompatibility, these particles can effectively transfer RNAs, proteins, and chemicals/metabolites from parent cells to target cells, impacting cellular and pathological processes. EVs have been shown to respond to disease-causing agents and impact target cells. Given that disease-causing agents span environmental contaminants, pathogens, social stressors, drugs, and other agents, the translation of EV methods into public health is now a critical research gap. This paper reviews approaches to translate EVs into exposure science, toxicology, and public health applications, highlighting blood as an example due to its common use within clinical, epidemiological, and toxicological studies. Approaches are reviewed surrounding the isolation and characterization of EVs and molecular markers that can be used to inform EV cell-of-origin. Molecular cargo contained within EVs are then discussed, including an original analysis of blood EV data from Vesiclepedia. Methods to evaluate functional consequences and target tissues of EVs are also reviewed. Lastly, the expanded integration of these approaches into future public health applications is discussed, including the use of EVs as promising biomarkers of exposure, effect, and disease. IMPACT STATEMENT: Extracellular vesicles (EVs) represent small, cell-derived structures consisting of molecules that can serve as biomarkers of exposure, effect, and disease. This review lays a novel foundation for integrating EVs, a rapidly advancing molecular biological tool, into the field of public health research including epidemiological, toxicological, and clinical investigations. This article represents an important advancement in public health and exposure science as it is among the first to translate EVs into this field.


Asunto(s)
Vesículas Extracelulares , Salud Pública , Biomarcadores/análisis , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos
10.
Environ Int ; 167: 107419, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863239

RESUMEN

INTRODUCTION: Wildfires are a threat to public health world-wide that are growing in intensity and prevalence. The biological mechanisms that elicit wildfire-associated toxicity remain largely unknown. The potential involvement of cross-tissue communication via extracellular vesicles (EVs) is a new mechanism that has yet to be evaluated. METHODS: Female CD-1 mice were exposed to smoke condensate samples collected from the following biomass burn scenarios: flaming peat; smoldering peat; flaming red oak; and smoldering red oak, representing lab-based simulations of wildfire scenarios. Lung tissue, bronchoalveolar lavage fluid (BALF) samples, peripheral blood, and heart tissues were collected 4 and 24 h post-exposure. Exosome-enriched EVs were isolated from plasma, physically characterized, and profiled for microRNA (miRNA) expression. Pathway-level responses in the lung and heart were evaluated through RNA sequencing and pathway analyses. RESULTS: Markers of cardiopulmonary tissue injury and inflammation from BALF samples were significantly altered in response to exposures, with the greatest changes occurring from flaming biomass conditions. Plasma EV miRNAs relevant to cardiovascular disease showed exposure-induced expression alterations, including miR-150, miR-183, miR-223-3p, miR-30b, and miR-378a. Lung and heart mRNAs were identified with differential expression enriched for hypoxia and cell stress-related pathways. Flaming red oak exposure induced the greatest transcriptional response in the heart, a large portion of which were predicted as regulated by plasma EV miRNAs, including miRNAs known to regulate hypoxia-induced cardiovascular injury. Many of these miRNAs had published evidence supporting their transfer across tissues. A follow-up analysis of miR-30b showed that it was increased in expression in the heart of exposed mice in the absence of changes to its precursor molecular, pri-miR-30b, suggesting potential transfer from external sources (e.g., plasma). DISCUSSION: This study posits a potential mechanism through which wildfire exposures induce cardiopulmonary responses, highlighting the role of circulating plasma EVs in intercellular and systems-level communication between tissues.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Incendios Forestales , Animales , Biomasa , Vesículas Extracelulares/metabolismo , Femenino , Hipoxia , Ratones , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA