Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Immunity ; 56(3): 592-605.e8, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36804959

RESUMEN

Plasmodium replicates within the liver prior to reaching the bloodstream and infecting red blood cells. Because clinical manifestations of malaria only arise during the blood stage of infection, a perception exists that liver infection does not impact disease pathology. By developing a murine model where the liver and blood stages of infection are uncoupled, we showed that the integration of signals from both stages dictated mortality outcomes. This dichotomy relied on liver stage-dependent activation of Vγ4+ γδ T cells. Subsequent blood stage parasite loads dictated their cytokine profiles, where low parasite loads preferentially expanded IL-17-producing γδ T cells. IL-17 drove extra-medullary erythropoiesis and concomitant reticulocytosis, which protected mice from lethal experimental cerebral malaria (ECM). Adoptive transfer of erythroid precursors could rescue mice from ECM. Modeling of γδ T cell dynamics suggests that this protective mechanism may be key for the establishment of naturally acquired malaria immunity among frequently exposed individuals.


Asunto(s)
Eritropoyesis , Malaria Cerebral , Animales , Ratones , Eritrocitos , Interleucina-17 , Hígado/parasitología , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T gamma-delta , Malaria
2.
FASEB J ; 38(13): e23799, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38979938

RESUMEN

Maternal Zika virus (ZIKV) infection during pregnancy has been associated with severe intrauterine growth restriction (IUGR), placental damage, metabolism disturbances, and newborn neurological abnormalities. Here, we investigated the impact of maternal ZIKV infection on placental nutrient transporters and nutrient-sensitive pathways. Immunocompetent (C57BL/6) mice were injected with Low (103 PFU-ZIKVPE243) or High (5 × 107 PFU-ZIKVPE243) ZIKV titers at gestational day (GD) 12.5, and tissue was collected at GD18.5 (term). Fetal-placental growth was impaired in male fetuses, which exhibited higher placental expression of the ZIKV infective marker, eukaryotic translation initiation factor 2 (eIF2α), but lower levels of phospho-eIF2α. There were no differences in fetal-placental growth in female fetuses, which exhibited no significant alterations in placental ZIKV infective markers. Furthermore, ZIKV promoted increased expression of glucose transporter type 1 (Slc2a1/Glut1) and decreased levels of glucose-6-phosphate in female placentae, with no differences in amino acid transport potential. In contrast, ZIKV did not impact glucose transporters in male placentae but downregulated sodium-coupled neutral amino acid 2 (Snat2) transporter expression. We also observed sex-dependent differences in the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation in ZIKV-infected pregnancies, showing that ZIKV can disturb placental nutrient sensing. Our findings highlight molecular alterations in the placenta caused by maternal ZIKV infection, shedding light on nutrient transport, sensing, and availability. Our results also suggest that female and male placentae employ distinct coping mechanisms in response to ZIKV-induced metabolic changes, providing insights into therapeutic approaches for congenital Zika syndrome.


Asunto(s)
Desarrollo Fetal , Ratones Endogámicos C57BL , Placenta , Transducción de Señal , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Embarazo , Ratones , Placenta/metabolismo , Placenta/virología , Masculino , Desarrollo Fetal/fisiología , Complicaciones Infecciosas del Embarazo/virología , Complicaciones Infecciosas del Embarazo/metabolismo , Nutrientes/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo
3.
Nature ; 576(7786): E4, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31754269

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nature ; 574(7777): 254-258, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31534216

RESUMEN

Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.


Asunto(s)
Encéfalo/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Homeostasis/efectos de la radiación , Intestinos/inmunología , Intestinos/efectos de la radiación , Luz , Linfocitos/inmunología , Linfocitos/efectos de la radiación , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Relojes Biológicos/genética , Relojes Biológicos/efectos de la radiación , Encéfalo/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/inmunología , Ritmo Circadiano/fisiología , Señales (Psicología) , Conducta Alimentaria/efectos de la radiación , Femenino , Microbioma Gastrointestinal/efectos de la radiación , Inmunidad Innata/efectos de la radiación , Intestinos/citología , Metabolismo de los Lípidos , Linfocitos/metabolismo , Masculino , Ratones , Fotoperiodo
5.
Rev Esp Enferm Dig ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591599

RESUMEN

Intraductal radiofrequency ablation (RFA) has been used in the management of malignant biliary obstruction and ampullary neoplasms. Some small studies refer to its role in managing benign biliary strictures with some promising results. The complications are not neglectable, namely cholangitis, pancreatitis, bleeding, and perforation, although most of them can be managed conservatively. There are two catheters available. Only the ERLA (EndoLumunal Radiofrequency Ablation, Taewoong Medical) catheter can control temperature and impedance, allowing it to reduce the risk of complications.

6.
J Infect Dis ; 228(6): 723-733, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279654

RESUMEN

The emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need to investigate alternative approaches to prevent infection and treat patients with coronavirus disease 2019. Here, we report the preclinical efficacy of NL-CVX1, a de novo decoy that blocks virus entry into cells by binding with nanomolar affinity and high specificity to the receptor-binding domain of the SARS-CoV-2 spike protein. Using a transgenic mouse model of SARS-CoV-2 infection, we showed that a single prophylactic intranasal dose of NL-CVX1 conferred complete protection from severe disease following SARS-CoV-2 infection. Multiple therapeutic administrations of NL-CVX1 also protected mice from succumbing to infection. Finally, we showed that infected mice treated with NL-CVX1 developed both anti-SARS-CoV-2 antibodies and memory T cells and were protected against reinfection a month after treatment. Overall, these observations suggest NL-CVX1 is a promising therapeutic candidate for preventing and treating severe SARS-CoV-2 infections.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/prevención & control , Ratones Transgénicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
7.
PLoS Pathog ; 17(9): e1009933, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34525131

RESUMEN

Adipose tissue is one of the major reservoirs of Trypanosoma brucei parasites, the causative agent of sleeping sickness, a fatal disease in humans. In mice, the gonadal adipose tissue (AT) typically harbors 2-5 million parasites, while most solid organs show 10 to 100-fold fewer parasites. In this study, we tested whether the AT environment responds immunologically to the presence of the parasite. Transcriptome analysis of T. brucei infected adipose tissue revealed that most upregulated host genes are involved in inflammation and immune cell functions. Histochemistry and flow cytometry confirmed an increasingly higher number of infiltrated macrophages, neutrophils and CD4+ and CD8+ T lymphocytes upon infection. A large proportion of these lymphocytes effectively produce the type 1 effector cytokines, IFN-γ and TNF-α. Additionally, the adipose tissue showed accumulation of antigen-specific IgM and IgG antibodies as infection progressed. Mice lacking T and/or B cells (Rag2-/-, Jht-/-), or the signature cytokine (Ifng-/-) displayed a higher parasite load both in circulation and in the AT, demonstrating the key role of the adaptive immune system in both compartments. Interestingly, infections of C3-/- mice showed that while complement system is dispensable to control parasite load in the blood, it is necessary in the AT and other solid tissues. We conclude that T. brucei infection triggers a broad and robust immune response in the AT, which requires the complement system to locally reduce parasite burden.


Asunto(s)
Tejido Adiposo/inmunología , Tejido Adiposo/microbiología , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología , Animales , Ratones
8.
Nature ; 549(7671): 277-281, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28869974

RESUMEN

Group 2 innate lymphoid cells (ILC2s) regulate inflammation, tissue repair and metabolic homeostasis, and are activated by host-derived cytokines and alarmins. Discrete subsets of immune cells integrate nervous system cues, but it remains unclear whether neuron-derived signals control ILC2s. Here we show that neuromedin U (NMU) in mice is a fast and potent regulator of type 2 innate immunity in the context of a functional neuron-ILC2 unit. We found that ILC2s selectively express neuromedin U receptor 1 (Nmur1), and mucosal neurons express NMU. Cell-autonomous activation of ILC2s with NMU resulted in immediate and strong NMUR1-dependent production of innate inflammatory and tissue repair cytokines. NMU controls ILC2s downstream of extracellular signal-regulated kinase and calcium-influx-dependent activation of both calcineurin and nuclear factor of activated T cells (NFAT). NMU treatment in vivo resulted in immediate protective type 2 responses. Accordingly, ILC2-autonomous ablation of Nmur1 led to impaired type 2 responses and poor control of worm infection. Notably, mucosal neurons were found adjacent to ILC2s, and these neurons directly sensed worm products and alarmins to induce NMU and to control innate type 2 cytokines. Our work reveals that neuron-ILC2 cell units confer immediate tissue protection through coordinated neuroimmune sensory responses.


Asunto(s)
Inmunidad Innata , Linfocitos/inmunología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Inmunidad Innata/efectos de los fármacos , Linfocitos/citología , Linfocitos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Neuronas/efectos de los fármacos , Neuropéptidos/farmacología , Nippostrongylus/inmunología , Receptores de Neurotransmisores/metabolismo , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología
9.
Proc Natl Acad Sci U S A ; 117(26): 15066-15074, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32554492

RESUMEN

Cancer incidence increases exponentially with age when human telomeres are shorter. Similarly, telomerase reverse transcriptase (tert) mutant zebrafish have premature short telomeres and anticipate cancer incidence to younger ages. However, because short telomeres constitute a road block to cell proliferation, telomere shortening is currently viewed as a tumor suppressor mechanism and should protect from cancer. This conundrum is not fully understood. In our current study, we report that telomere shortening promotes cancer in a noncell autonomous manner. Using zebrafish chimeras, we show increased incidence of invasive melanoma when wild-type (WT) tumors are generated in tert mutant zebrafish. Tissues adjacent to melanoma lesions (skin) and distant organs (intestine) in tert mutants exhibited higher levels of senescence and inflammation. In addition, we transferred second generation (G2) tert blastula cells into WT to produce embryo chimeras. Cells with very short telomeres induced increased tumor necrosis factor1-α (TNF1-α) expression and senescence in larval tissues in a noncell autonomous manner, creating an inflammatory environment. Considering that inflammation is protumorigenic, we transplanted melanoma-derived cells into G2 tert zebrafish embryos and observed that tissue environment with short telomeres leads to increased tumor development. To test if inflammation was necessary for this effect, we treated melanoma transplants with nonsteroid anti-inflammatory drugs and show that higher melanoma dissemination can be averted. Thus, apart from the cell autonomous role of short telomeres in contributing to genome instability, we propose that telomere shortening with age causes systemic chronic inflammation leading to increased tumor incidence.


Asunto(s)
Melanoma/metabolismo , Telómero/metabolismo , Pez Cebra/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Melanoma/genética , Melanoma/inmunología , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Acortamiento del Telómero , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Pez Cebra/genética , Pez Cebra/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Biol Reprod ; 106(6): 1033-1048, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35098297

RESUMEN

Thyroid hormones (THs) are required for the growth and development of the fetus, stimulating anabolism, and oxygen consumption from the early stages of pregnancy to the period of fetal differentiation close to delivery. Maternal changes in the hypothalamic-pituitary-thyroid axis are also well known. In contrast, several open questions remain regarding the relationships between the placenta and the maternal and fetal TH systems. The exact mechanism by which the placenta participates in regulating the TH concentration in the fetus and mother and the role of TH in the placenta are still poorly studied. In this review, we aim to summarize the available data in the area and highlight significant gaps in our understanding of the ontogeny and cell-specific localization of TH transporters, TH receptors, and TH metabolic enzymes in the placenta in both human and rodent models. Significant deficiencies also exist in the knowledge of the contribution of genomic and nongenomic effects of TH on the placenta and finally, how the placenta reacts during pregnancy when the mother has thyroid disease. By addressing these key knowledge gaps, improved pregnancy outcomes and management of women with thyroid alterations may be possible.


Asunto(s)
Placenta , Hormonas Tiroideas , Biología , Femenino , Feto/metabolismo , Humanos , Placenta/metabolismo , Embarazo , Hormonas Tiroideas/metabolismo
11.
Nature ; 535(7612): 440-443, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27409807

RESUMEN

Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial­ILC3­epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals.


Asunto(s)
Inmunidad Innata , Intestinos/inmunología , Linfocitos/inmunología , Neuroglía/metabolismo , Neurotransmisores/metabolismo , Animales , Microambiente Celular/inmunología , Células Epiteliales/citología , Células Epiteliales/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Inmunidad Mucosa , Inflamación/inmunología , Inflamación/metabolismo , Interleucinas/biosíntesis , Interleucinas/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Intestinos/citología , Linfocitos/citología , Linfocitos/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/metabolismo , Neuroglía/inmunología , Neurotransmisores/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-ret/deficiencia , Proteínas Proto-Oncogénicas c-ret/metabolismo , Factor de Transcripción STAT3/metabolismo , Interleucina-22
12.
Proc Natl Acad Sci U S A ; 116(20): 9979-9988, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31028144

RESUMEN

Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αß-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αß-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.


Asunto(s)
Linfocitos Intraepiteliales/fisiología , Hígado/inmunología , Malaria Cerebral/inmunología , Plasmodium berghei/patogenicidad , Esporozoítos/patogenicidad , Animales , Hígado/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Esporozoítos/crecimiento & desarrollo
13.
Int Braz J Urol ; 48(6): 944-951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36173406

RESUMEN

OBJECTIVE: Primary monosymptomatic nocturnal enuresis (PMNE) is a prevalent condition in childhood, and the pathophysiology is multifactorial. This study investigated the relationship between the toilet training process (TT) and PMNE in children and adolescents. PATIENTS AND METHODS: A case-control study was carried out from 2015 to 2020. The presence of PMNE was identified according to International Children's Continence Society criteria. A semi-structured questionnaire was applied to assess TT. RESULTS: The study included 103 children and adolescents with PMNE and 269 participants with normal psychomotor development without PMNE (control group [CG]). Readiness signals were more remembered and less frequent in participants with PMNE (p=0.001) when compared to control group. No differences were found between the groups regarding the onset age of the daytime TT (p= 0.10), the nocturnal TT (p=0.08), the acquisition of daytime continence (p=0.06), and the type of equipment used for the TT (p=0.99). The use of Child-Oriented approach in group of children with enuresis was lower than in controls [87.4% (90/103) versus 94% (250/266)], respectively (OR= 0.44, 95% CI 0.21-0.94, p = 0.039). CONCLUSIONS: The age of onset of TT, acquisition of daytime continence, and the type of equipment were not associated with higher occurrence of PMNE. On the other hand, the Child-Oriented approach was a protective factor for the occurrence of PMNE.


Asunto(s)
Enuresis , Enuresis Nocturna , Adolescente , Estudios de Casos y Controles , Humanos , Enuresis Nocturna/epidemiología , Control de Esfínteres
14.
PLoS Pathog ; 15(11): e1008145, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31703103

RESUMEN

Sleeping sickness and malaria are parasitic diseases with overlapping geographical distributions in sub-Saharan Africa. We hypothesized that the immune response elicited by an infection with Trypanosoma brucei, the etiological agent of sleeping sickness, would inhibit a subsequent infection by Plasmodium, the malaria parasite, decreasing the severity of its associated pathology. To investigate this, we established a new co-infection model in which mice were initially infected with T. brucei, followed by administration of P. berghei sporozoites. We observed that a primary infection by T. brucei significantly attenuates a subsequent infection by the malaria parasite, protecting mice from experimental cerebral malaria and prolonging host survival. We further observed that an ongoing T. brucei infection leads to an accumulation of lymphocyte-derived IFN-γ in the liver, limiting the establishment of a subsequent hepatic infection by P. berghei sporozoites. Thus, we identified a novel host-mediated interaction between two parasitic infections, which may be epidemiologically relevant in regions of Trypanosoma/Plasmodium co-endemicity.


Asunto(s)
Antivirales/farmacología , Coinfección/tratamiento farmacológico , Hígado/efectos de los fármacos , Malaria Cerebral/prevención & control , Plasmodium berghei/fisiología , Trypanosoma brucei brucei/aislamiento & purificación , Tripanosomiasis Africana/complicaciones , Animales , Coinfección/epidemiología , Coinfección/parasitología , Interferón gamma/farmacología , Hígado/inmunología , Hígado/parasitología , Malaria Cerebral/epidemiología , Malaria Cerebral/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tripanosomiasis Africana/parasitología
15.
Cell Microbiol ; 22(6): e13201, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32149435

RESUMEN

Infections with protozoan and helminthic parasites affect multiple organs in the mammalian host. Imaging pathogens in their natural environment takes a more holistic view on biomedical aspects of parasitic infections. Here, we focus on selected organs of the thoracic and abdominopelvic cavities most commonly affected by parasites. Parasitic infections of these organs are often associated with severe medical complications or have health implications beyond the infected individual. Intravital imaging has provided a more dynamic picture of the host-parasite interplay and contributed not only to our understanding of the various disease pathologies, but has also provided fundamental insight into the biology of the parasites.


Asunto(s)
Interacciones Huésped-Parásitos , Microscopía Intravital/métodos , Parásitos , Enfermedades Parasitarias , Animales , Femenino , Genitales , Corazón/parasitología , Humanos , Hígado , Pulmón/parasitología , Masculino , Glándulas Mamarias Humanas , Placenta , Embarazo
16.
Vet Pathol ; 58(4): 650-654, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33906549

RESUMEN

Veterinary pathologists are key contributors to multidisciplinary biomedical research. However, they are occasionally excluded from authorship in published articles despite their substantial intellectual and data contributions. To better understand the potential origins and implications of this practice, we identified and analyzed 29 scientific publications where the contributing pathologist was excluded as an author. The amount of pathologist-generated data contributions were similar to the calculated average contributions for authors, suggesting that the amount of data contributed by the pathologist was not a valid factor for their exclusion from authorship. We then studied publications with pathologist-generated contributions to compare the effects of inclusion or exclusion of the pathologist as an author. Exclusion of the pathologist from authorship was associated with significantly lower markers of rigor and reproducibility compared to articles in which the pathologist was included as author. Although this study did not find justification for the exclusion of pathologists from authorship, potential consequences of their exclusion on data quality were readily detectable.


Asunto(s)
Autoria , Investigación Biomédica , Animales , Humanos , Patólogos , Edición , Reproducibilidad de los Resultados
17.
Int Braz J Urol ; 47(5): 969-978, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34260173

RESUMEN

INTRODUCTION: The present study aims to investigate the prevalence of lower tract urinary symptoms (LUTS) and symptoms of attention-deficit/hyperactivity disorder (ADHD) in children and adolescents and their association in a community setting using validated scoring instruments. MATERIALS AND METHODS: A cross-sectional study was carried out from February 2015 to December 2019, during which the parents or guardians of 431 children and adolescents from 5 to 13 years of age, attending a general pediatric outpatient clinic were interviewed. RESULTS: The prevalence of ADHD symptoms and LUTS were 19.9% and 17.9%, respectively. Of the 82 children and adolescents with ADHD, 28% (23) had LUTS (OR 2.31, 95% CI 1.28 to 3.75, p=0.008). Mean total DVSS score in children in the group of children presenting ADHD symptom was significantly higher than those without ADHD symptom (10.2±4.85 vs. 4.9±2.95, p=0.002). Urgency prevailed among LUTS as the most frequent symptom reported by patients with ADHD symptoms (p=0.004). Analyzing all subscales of the DVSS, the items "When your child wants to pee, can't he wait? "Your child holds the pee by crossing his legs, crouching or dancing?" were higher in those with ADHD symptoms (p=0.01 and 0.02, respectively). Functional constipation was present in 36.4% of children with LUTS and 20.7% without LUTS (OR 4.3 95% CI 1-5.3 p=0.001). CONCLUSION: Children and adolescents with ADHD symptoms are 2.3 times more likely to have LUTS. The combined type of ADHD was the most prevalent among them.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Síntomas del Sistema Urinario Inferior , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Niño , Estudios Transversales , Humanos , Síntomas del Sistema Urinario Inferior/epidemiología , Prevalencia
18.
J Cell Mol Med ; 24(18): 10636-10647, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32779889

RESUMEN

Malaria in pregnancy (MiP) induces intrauterine growth restriction (IUGR) and preterm labour (PTL). However, its effects on yolk sac morphology and function are largely unexplored. We hypothesized that MiP modifies yolk sac morphology and efflux transport potential by modulating ABC efflux transporters. C57BL/6 mice injected with Plasmodium berghei ANKA (5 × 105 infected erythrocytes) at gestational day (GD) 13.5 were subjected to yolk sac membrane harvesting at GD 18.5 for histology, qPCR and immunohistochemistry. MiP did not alter the volumetric proportion of the yolk sac's histological components. However, it increased levels of Abcb1a mRNA (encoding P-glycoprotein) and macrophage migration inhibitory factor (Mif chemokine), while decreasing Abcg1 (P < 0.05); without altering Abca1, Abcb1b, Abcg2, Snat1, Snat2, interleukin (Il)-1ß and C-C Motif chemokine ligand 2 (Ccl2). Transcripts of Il-6, chemokine (C-X-C motif) ligand 1 (Cxcl1), Glut1 and Snat4 were not detectible. ABCA1, ABCG1, breast cancer resistance protein (BCRP) and P-gp were primarily immunolocalized to the cell membranes and cytoplasm of endodermic epithelium but also in the mesothelium and in the endothelium of mesodermic blood vessels. Intensity of P-gp labelling was stronger in both endodermic epithelium and mesothelium, whereas ABCA1 labelling increased in the endothelium of the mesodermic blood vessels. The presence of ABC transporters in the yolk sac wall suggests that this fetal membrane acts as an important protective gestational barrier. Changes in ABCA1 and P-gp in MiP may alter the biodistribution of toxic substances, xenobiotics, nutrients and immunological factors within the fetal compartment and participate in the pathogenesis of malaria-induced IUGR and PTL.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/biosíntesis , Subfamilia B de Transportador de Casetes de Unión a ATP/biosíntesis , Regulación de la Expresión Génica , Malaria/metabolismo , Complicaciones Infecciosas del Embarazo/metabolismo , Saco Vitelino/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Transporte Biológico , Citocinas/biosíntesis , Citocinas/genética , Femenino , Retardo del Crecimiento Fetal/etiología , Inflamación , Malaria/complicaciones , Malaria/genética , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Plasmodium berghei , Embarazo , Complicaciones Infecciosas del Embarazo/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saco Vitelino/ultraestructura
19.
Adv Exp Med Biol ; 1219: 403-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32130711

RESUMEN

This chapter provides a brief overview of the methods to study and modulate the metabolic phenotype of the tumor microenvironment, including own research work to demonstrate the impact that metabolic shifts in the host have on cancer. Firstly, we briefly discuss the relevance of using animal models to address this topic, and also the importance of acknowledging that animals have diverse metabolic phenotypes according to species, and even with strain, age or sex. We also present original data to highlight the impact that changes in metabolic phenotype of the microenvironment have on tumor progression. Using an acute leukemia mouse xenograft model and high-fat diet we show that a shift in the host metabolic phenotype, induced by high-fat feeding, significantly impacts on tumor progression. The mechanism through which this occurs involves a direct effect of the increased levels of circulating lipoproteins in both tumor and non-neoplastic cells.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Microambiente Tumoral , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/patología , Ratones , Fenotipo
20.
Proc Natl Acad Sci U S A ; 114(39): E8234-E8243, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28835536

RESUMEN

Cancer is as unique as the person fighting it. With the exception of a few biomarker-driven therapies, patients go through rounds of trial-and-error approaches to find the best treatment. Using patient-derived cell lines, we show that zebrafish larvae xenotransplants constitute a fast and highly sensitive in vivo model for differential therapy response, with resolution to reveal intratumor functional cancer heterogeneity. We screened international colorectal cancer therapeutic guidelines and determined distinct functional tumor behaviors (proliferation, metastasis, and angiogenesis) and differential sensitivities to standard therapy. We observed a general higher sensitivity to FOLFIRI [5-fluorouracil(FU)+irinotecan+folinic acid] than to FOLFOX (5-FU+oxaliplatin+folinic acid), not only between isogenic tumors but also within the same tumor. We directly compared zebrafish xenografts with mouse xenografts and show that relative sensitivities obtained in zebrafish are maintained in the rodent model. Our data also illustrate how KRAS mutations can provide proliferation advantages in relation to KRASWT and how chemotherapy can unbalance this advantage, selecting for a minor clone resistant to chemotherapy. Zebrafish xenografts provide remarkable resolution to measure Cetuximab sensitivity. Finally, we demonstrate the feasibility of using primary patient samples to generate zebrafish patient-derived xenografts (zPDX) and provide proof-of-concept experiments that compare response to chemotherapy and biological therapies between patients and zPDX. Altogether, our results suggest that zebrafish larvae xenografts constitute a promising fast assay for precision medicine, bridging the gap between genotype and phenotype in an in vivo setting.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Pez Cebra/metabolismo , Animales , Camptotecina/análogos & derivados , Camptotecina/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Fluorouracilo/farmacología , Humanos , Irinotecán , Leucovorina/farmacología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Compuestos Organoplatinos/farmacología , Oxaliplatino , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA