Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Synchrotron Radiat ; 30(Pt 2): 284-300, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891842

RESUMEN

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot by shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, an imaging detector capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst is employed, and allows a photon-shot-noise-limited sensitivity to be approached. The setup and its capabilities are reviewed as well as the online and offline analysis tools provided to users.

2.
Nat Mater ; 20(1): 30-37, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33020615

RESUMEN

Topological states of matter exhibit fascinating physics combined with an intrinsic stability. A key challenge is the fast creation of topological phases, which requires massive reorientation of charge or spin degrees of freedom. Here we report the picosecond emergence of an extended topological phase that comprises many magnetic skyrmions. The nucleation of this phase, followed in real time via single-shot soft X-ray scattering after infrared laser excitation, is mediated by a transient topological fluctuation state. This state is enabled by the presence of a time-reversal symmetry-breaking perpendicular magnetic field and exists for less than 300 ps. Atomistic simulations indicate that the fluctuation state largely reduces the topological energy barrier and thereby enables the observed rapid and homogeneous nucleation of the skyrmion phase. These observations provide fundamental insights into the nature of topological phase transitions, and suggest a path towards ultrafast topological switching in a wide variety of materials through intermediate fluctuating states.

3.
J Biol Chem ; 290(41): 24715-26, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26309257

RESUMEN

In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteínas Quinasas Activadas por AMP/metabolismo , Biocatálisis , Activación Enzimática/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Mutación , Fenotipo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Transcripción Genética/efectos de los fármacos
4.
Small ; 10(19): 3954-61, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24990320

RESUMEN

In order to maximize the potential of nanoparticles (NPs) in cancer imaging and therapy, their mechanisms of interaction with host tissue need to be fully understood. NP uptake is known to be dramatically influenced by the tumor microenvironment, and an imaging platform that could replicate in vivo cellular conditions would make big strides in NP uptake studies. Here, a novel NP uptake platform consisting of a tissue-engineered 3D in vitro cancer model (tumoroid), which mimics the microarchitecture of a solid cancer mass and stroma, is presented. As the tumoroid exhibits fundamental characteristics of solid cancer tissue and its cellular and biochemical parameters are controllable, it provides a real alternative to animal models. Furthermore, an X-ray fluorescence imaging system is developed to demonstrate 3D imaging of GNPs and to determine uptake efficiency within the tumoroid. This platform has implications for optimizing the targeted delivery of NPs to cells to benefit cancer diagnostics and therapy.


Asunto(s)
Nanopartículas/química , Neoplasias/patología , Células 3T3 , Animales , Calibración , Línea Celular Tumoral , Oro/química , Humanos , Imagenología Tridimensional , Nanopartículas del Metal/química , Ratones , Microscopía Electrónica de Transmisión , Ingeniería de Tejidos/métodos , Microambiente Tumoral , Rayos X
5.
Sci Rep ; 13(1): 11799, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479713

RESUMEN

The 64k pixel DEPFET module is the key sensitive component of the DEPFET Sensor with Signal Compression (DSSC), a large area 2D hybrid detector for capturing and measuring soft X-rays at the European XFEL. The final 1-megapixel camera has to detect photons with energies between [Formula: see text] and [Formula: see text], and must provide a peak frame rate of [Formula: see text] to cope with the unique bunch structure of the European XFEL. This work summarizes the functionalities and properties of the first modules assembled with full-format CMOS-DEPFET arrays, featuring [Formula: see text] hexagonally-shaped pixels with a side length of 136 µm. The pixel sensors utilize the DEPFET technology to realize an extremely low input capacitance for excellent energy resolution and, at the same time, an intrinsic capability of signal compression without any gain switching. Each pixel of the readout ASIC includes a DEPFET-bias current cancellation circuitry, a trapezoidal-shaping filter, a 9-bit ADC and a 800-word long digital memory. The trimming, calibration and final characterization were performed in a laboratory test-bench at DESY. All detector features are assessed at [Formula: see text]. An outstanding equivalent noise charge of [Formula: see text]e-rms is achieved at 1.1-MHz frame rate and gain of 26.8 Analog-to-Digital Unit per keV ([Formula: see text]). At [Formula: see text] and [Formula: see text], a noise of [Formula: see text] e-rms and a dynamic range of [Formula: see text] are obtained. The highest dynamic range of [Formula: see text] is reached at [Formula: see text] and [Formula: see text]. These values can fulfill the specification of the DSSC project.

6.
Sci Adv ; 8(13): eabn0523, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35363518

RESUMEN

Magnetic nanoparticles such as FePt in the L10 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub-10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices.

7.
Microsc Microanal ; 15(3): 231-6, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19460179

RESUMEN

A detector that looks promising for advanced imaging modalities--such as X-ray absorption contrast imaging, X-ray fluorescence imaging, and diffraction-enhanced imaging--is the controlled-drift detector (CDD). The CDD is a novel two-dimensional X-ray imager with energy resolving capability of spectroscopic quality. It is built on a fully depleted silicon wafer and features fast readout while being operated at or near room temperature. The use of CDDs in the aforementioned applications allows translating these techniques from synchrotron-based experiments to laboratory-size experiments using polychromatic X-ray generators. We have built a dedicated and versatile detection module based on a 36 mm2 CDD chip featuring pixels of 180 x 180 microm 2, and we evaluated the system performance in different X-ray imaging applications both with synchrotron-based experiments and in the laboratory environment.

8.
Biochim Biophys Acta Mol Cell Res ; 1865(12): 1901-1913, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30290237

RESUMEN

Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.


Asunto(s)
Metionina/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Transporte Biológico , Metabolómica/métodos , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
9.
IEEE Pulse ; 2(3): 35-40, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21642031

RESUMEN

The increase in the understanding of the physical and functional properties of the biological material, from the cellular level down to single molecules, owes its success to the development of suitable high-sensitivity platforms to image the biomaterial and analyze its response to specific stimuli. Imaging has indeed reached molecular capabilities, thanks to optical or magnetic markers [1], to the atomic force microscopy (AFM) in surface reconstruction [2], and is nearing success in three-dimensional (3-D) reconstruction thanks to X-ray holography [3].


Asunto(s)
Técnicas Biosensibles , Imagen Molecular , Citometría de Flujo , Humanos , Procedimientos Analíticos en Microchip , Nanoestructuras , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA