Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Development ; 144(7): 1235-1241, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28351867

RESUMEN

Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by the SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.


Asunto(s)
Factores de Transcripción MEF2/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Elementos de Facilitación Genéticos , Ratones Transgénicos , Multimerización de Proteína
2.
PLoS Biol ; 9(6): e1001086, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21738444

RESUMEN

The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. Nucleosome number in cells was considered fixed, but recently aging yeast and mammalian cells were shown to contain fewer nucleosomes. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker, and variant histones, and a correspondingly reduced number of nucleosomes, possibly because HMGB1 facilitates nucleosome assembly. Yeast nhp6 mutants lacking Nhp6a and -b proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and affects the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform and can be modelled assuming that different nucleosomal sites compete for available histones. Sites with a high propensity to occupation are almost always packaged into nucleosomes both in wild type and nucleosome-depleted cells; nucleosomes on sites with low propensity to occupation are disproportionately lost in nucleosome-depleted cells. We suggest that variation in nucleosome number, by affecting nucleosomal occupancy both genomewide and gene-specifically, constitutes a novel layer of epigenetic regulation.


Asunto(s)
Genoma , Proteína HMGB1/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Transcripción Genética , Animales , ADN/genética , ADN/metabolismo , Daño del ADN , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/fisiología , Proteína HMGB1/genética , Células HeLa , Histonas/genética , Humanos , Ratones , Modelos Teóricos , ARN/genética , ARN/metabolismo , Levaduras/genética , Levaduras/metabolismo
3.
Sci Adv ; 9(48): eadh5313, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019918

RESUMEN

Mammals have limited capacity for heart regeneration, whereas zebrafish have extraordinary regeneration abilities. During zebrafish heart regeneration, endothelial cells promote cardiomyocyte cell cycle reentry and myocardial repair, but the mechanisms responsible for promoting an injury microenvironment conducive to regeneration remain incompletely defined. Here, we identify the matrix metalloproteinase Mmp14b as an essential regulator of heart regeneration. We identify a TEAD-dependent mmp14b endothelial enhancer induced by heart injury in zebrafish and mice, and we show that the enhancer is required for regeneration, supporting a role for Hippo signaling upstream of mmp14b. Last, we show that MMP-14 function in mice is important for the accumulation of Agrin, an essential regulator of neonatal mouse heart regeneration. These findings reveal mechanisms for extracellular matrix remodeling that promote heart regeneration.


Asunto(s)
Células Endoteliales , Pez Cebra , Animales , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proliferación Celular , Regeneración , Mamíferos
4.
Nat Commun ; 12(1): 2717, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976150

RESUMEN

Circulating cell-free DNA (cfDNA) in the bloodstream originates from dying cells and is a promising noninvasive biomarker for cell death. Here, we propose an algorithm, CelFiE, to accurately estimate the relative abundances of cell types and tissues contributing to cfDNA from epigenetic cfDNA sequencing. In contrast to previous work, CelFiE accommodates low coverage data, does not require CpG site curation, and estimates contributions from multiple unknown cell types that are not available in external reference data. In simulations, CelFiE accurately estimates known and unknown cell type proportions from low coverage and noisy cfDNA mixtures, including from cell types composing less than 1% of the total mixture. When used in two clinically-relevant situations, CelFiE correctly estimates a large placenta component in pregnant women, and an elevated skeletal muscle component in amyotrophic lateral sclerosis (ALS) patients, consistent with the occurrence of muscle wasting typical in these patients. Together, these results show how CelFiE could be a useful tool for biomarker discovery and monitoring the progression of degenerative disease.


Asunto(s)
Algoritmos , Esclerosis Amiotrófica Lateral/genética , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , Epigénesis Genética , Adulto , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/patología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores/sangre , Estudios de Casos y Controles , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/clasificación , Femenino , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Monocitos/inmunología , Monocitos/metabolismo , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Especificidad de Órganos , Embarazo , Trimestres del Embarazo/sangre , Trimestres del Embarazo/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo
5.
Sci Signal ; 14(671)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622983

RESUMEN

Ribosome biogenesis in eukaryotes requires the coordinated production and assembly of 80 ribosomal proteins and four ribosomal RNAs (rRNAs), and its rate must be synchronized with cellular growth. Here, we showed that the Microprocessor complex, which mediates the first step of microRNA processing, potentiated the transcription of ribosomal protein genes by eliminating DNA/RNA hybrids known as R-loops. Nutrient deprivation triggered the nuclear export of Drosha, a key component of the Microprocessor complex, and its subsequent degradation by the E3 ubiquitin ligase Nedd4, thereby reducing ribosomal protein production and protein synthesis. In mouse erythroid progenitors, conditional deletion of Drosha led to the reduced production of ribosomal proteins, translational inhibition of the mRNA encoding the erythroid transcription factor Gata1, and impaired erythropoiesis. This phenotype mirrored the clinical presentation of human "ribosomopathies." Thus, the Microprocessor complex plays a pivotal role in synchronizing protein synthesis capacity with cellular growth rate and is a potential drug target for anemias caused by ribosomal insufficiency.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Ribosómicas/biosíntesis , Ribosomas , Animales , Eritropoyesis , Ratones , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo
6.
Neuron ; 107(1): 95-111.e6, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380032

RESUMEN

Progressive synapse loss is an inevitable and insidious part of age-related neurodegenerative disease. Typically, synapse loss precedes symptoms of cognitive and motor decline. This suggests the existence of compensatory mechanisms that can temporarily counteract the effects of ongoing neurodegeneration. Here, we demonstrate that presynaptic homeostatic plasticity (PHP) is induced at degenerating neuromuscular junctions, mediated by an evolutionarily conserved activity of presynaptic ENaC channels in both Drosophila and mouse. To assess the consequence of eliminating PHP in a mouse model of ALS-like degeneration, we generated a motoneuron-specific deletion of Scnn1a, encoding the ENaC channel alpha subunit. We show that Scnn1a is essential for PHP without adversely affecting baseline neural function or lifespan. However, Scnn1a knockout in a degeneration-causing mutant background accelerated motoneuron loss and disease progression to twice the rate observed in littermate controls with intact PHP. We propose a model of neuroprotective homeostatic plasticity, extending organismal lifespan and health span.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Homeostasis/fisiología , Plasticidad Neuronal/fisiología , Neuroprotección/fisiología , Terminales Presinápticos/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Drosophila melanogaster , Ratones , Ratones Noqueados , Unión Neuromuscular/metabolismo
7.
Elife ; 62017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28072389

RESUMEN

Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Proteína C9orf72/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Drosophila , Prueba de Complementación Genética , Ratones Noqueados , Ratones Transgénicos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteína FUS de Unión a ARN/metabolismo
8.
Cell Rep ; 8(6): 1639-1648, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25242327

RESUMEN

Skeletal muscle comprises a heterogeneous population of fibers with important physiological differences. Fast fibers are glycolytic and fatigue rapidly. Slow fibers utilize oxidative metabolism and are fatigue resistant. Muscle diseases such as sarcopenia and atrophy selectively affect fast fibers, but the molecular mechanisms regulating fiber type-specific gene expression remain incompletely understood. Here, we show that the transcription factor NFATc1 controls fiber type composition and is required for fast-to-slow fiber type switching in response to exercise in vivo. Moreover, MyoD is a crucial transcriptional effector of the fast fiber phenotype, and we show that NFATc1 inhibits MyoD-dependent fast fiber gene promoters by physically interacting with the N-terminal activation domain of MyoD and blocking recruitment of the essential transcriptional coactivator p300. These studies establish a molecular mechanism for fiber type switching through direct inhibition of MyoD to control the opposing roles of MyoD and NFATc1 in fast versus slow fiber phenotypes.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Femenino , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutagénesis , Proteína MioD/química , Factores de Transcripción NFATC/química , Factores de Transcripción NFATC/genética , Fenotipo , Condicionamiento Físico Animal , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Activación Transcripcional , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo
9.
Cell Transplant ; 22(11): 2175-86, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23051559

RESUMEN

High levels of donor-derived high-mobility group box 1 (HMGB1) protein have been associated with poor islet graft outcome in mouse models. The aim of our work was to determine whether HMGB1 released by human islets had independent proinflammatory effects that influence engraftment in humans. Human islet preparations contained and released HMGB1 in different amounts, as determined by Western blot and ELISA (median 17 pg/ml/IEQ/24 h; min-max 0-211, n = 74). HMGB1 release directly correlated with brain death, donor hyperamilasemia, and factors related to the pancreas digestion procedure (collagenase and digestion time). HMGB1 release was significantly positively associated with the release of other cytokines/chemokines, particularly with the highly released "proinflammatory" CXCL8/IL-8, CXCL1/GRO-α, and the IFN-γ-inducible chemokines CXCL10/IP-10 and CXCL9/MIG. HMGB1 release was not modulated by Toll-like receptor 2, 3, 4, 5, and 9 agonists or by exposure to IL-1ß. When evaluated after islet transplantation, pretransplant HMGB1 release was weakly associated with the activation of the coagulation cascade (evaluated as serum cross-linked fibrin products), but not with the immediate posttransplant inflammatory response. Concordantly, HMGB1 did not affect short-term human islet function. Our data show that human islet HMGB1 release is a sign of "damaged" islets, although without any independent direct role in graft failure.


Asunto(s)
Proteína HMGB1/metabolismo , Islotes Pancreáticos/metabolismo , Adulto , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/cirugía , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Humanos , Interleucina-1beta/farmacología , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Islotes Pancreáticos , Masculino , Persona de Mediana Edad , Receptores Toll-Like/antagonistas & inhibidores , Receptores Toll-Like/metabolismo , Trasplante Homólogo
10.
Nat Commun ; 4: 2388, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24005720

RESUMEN

Upon muscle injury, the high mobility group box 1 (HMGB1) protein is upregulated and secreted to initiate reparative responses. Here we show that HMGB1 controls myogenesis both in vitro and in vivo during development and after adult muscle injury. HMGB1 expression in muscle cells is regulated at the translational level: the miRNA miR-1192 inhibits HMGB1 translation and the RNA-binding protein HuR promotes it. HuR binds to a cis-element, HuR binding sites (HuRBS), located in the 3'UTR of the HMGB1 transcript, and at the same time miR-1192 is recruited to an adjacent seed element. The binding of HuR to the HuRBS prevents the recruitment of Argonaute 2 (Ago2), overriding miR-1192-mediated translation inhibition. Depleting HuR reduces myoblast fusion and silencing miR-1192 re-establishes the fusion potential of HuR-depleted cells. We propose that HuR promotes the commitment of myoblasts to myogenesis by enhancing the translation of HMGB1 and suppressing the translation inhibition mediated by miR-1192.


Asunto(s)
Proteínas ELAV/metabolismo , Proteína HMGB1/genética , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Biosíntesis de Proteínas , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Extractos Celulares , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Proteína HMGB1/metabolismo , Ratones , MicroARNs/genética , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mioblastos/metabolismo , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración/genética
11.
J Exp Med ; 209(3): 551-63, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22370717

RESUMEN

After tissue damage, inflammatory cells infiltrate the tissue and release proinflammatory cytokines. HMGB1 (high mobility group box 1), a nuclear protein released by necrotic and severely stressed cells, promotes cytokine release via its interaction with the TLR4 (Toll-like receptor 4) receptor and cell migration via an unknown mechanism. We show that HMGB1-induced recruitment of inflammatory cells depends on CXCL12. HMGB1 and CXCL12 form a heterocomplex, which we characterized by nuclear magnetic resonance and surface plasmon resonance, that acts exclusively through CXCR4 and not through other HMGB1 receptors. Fluorescence resonance energy transfer data show that the HMGB1-CXCL12 heterocomplex promotes different conformational rearrangements of CXCR4 from that of CXCL12 alone. Mononuclear cell recruitment in vivo into air pouches and injured muscles depends on the heterocomplex and is inhibited by AMD3100 and glycyrrhizin. Thus, inflammatory cell recruitment and activation both depend on HMGB1 via different mechanisms.


Asunto(s)
Quimiocina CXCL12/fisiología , Proteína HMGB1/fisiología , Inflamación/etiología , Receptores CXCR4/fisiología , Animales , Secuencia de Bases , Señalización del Calcio , Movimiento Celular/fisiología , Quimiocina CXCL12/química , ADN Complementario/genética , Fibroblastos/fisiología , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Proteína HMGB1/química , Humanos , Inflamación/patología , Inflamación/fisiopatología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Monocitos/fisiología , Complejos Multiproteicos/química , Células 3T3 NIH , Resonancia Magnética Nuclear Biomolecular , Receptor para Productos Finales de Glicación Avanzada , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores Inmunológicos/fisiología , Transducción de Señal , Resonancia por Plasmón de Superficie , Receptores Toll-Like/fisiología , Transfección
12.
J Mol Cell Biol ; 2(3): 116-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20031963

RESUMEN

Yanai et al. (2009, Nature 462, 99-103) have shown that high mobility group boxs (HMGBs) are universal sensors of viral nucleic acids, and thus of cell infection. This appears to be an evolutionary ancient mechanism of virus detection, and possibly might be a facet of a more general propensity of HMGBs to act as integrators of signals that pertain to peace and stress, life and death.


Asunto(s)
Proteínas HMGB/metabolismo , Animales , ADN/inmunología , Evolución Molecular , Proteínas HMGB/deficiencia , Proteínas HMGB/genética , Ratones , Modelos Inmunológicos , Ácidos Nucleicos/inmunología , ARN/inmunología , Receptores Toll-Like/metabolismo , Virosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA