Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Basic Microbiol ; 59(1): 38-53, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30320901

RESUMEN

Quorum-sensing (QS) mechanisms are important in intra- and inter-specific communication among bacteria. We investigated QS mechanisms in Bradyrhizobium japonicum strain CPAC 15 and Azospirillum brasilense strains Ab-V5 and Ab-V6, used in commercial co-inoculants for the soybean crop in Brazil. A transconjugant of CPAC 15-QS with partial inactivation of N-acyl-homoserine lactones (AHLs) was obtained and several parameters were evaluated; in vitro, CPAC 15 and the transconjugant differed in growth, but not in biofilm formation, and no differences were observed in the symbiotic performance in vivo. The genome of CPAC 15 carries functional luxI and luxR genes and low amounts of three AHL molecules were detected: 3-OH-C12-AHL, 3-OH-C14-AHL, and 3-oxo-C14-AHL. Multiple copies of luxR-like genes, but not of luxI are present in the genomes of Ab-V5 and Ab-V6, and differences in gene expression were observed when the strains were co-cultured with B. japonicum; we may infer that the luxR-genes of A. brasilense may perceive the AHL molecules of B. japonicum. Soybean symbiotic performance was improved especially by co-inoculation with Ab-V6, which, contrarily to Ab-V5, did not respond to the AHLs of CPAC 15. We concluded that A. brasilense Ab-V5, but not Ab-V6, responded to the QS signals of CPAC 15, and that the synergistic interaction may be credited, at least partially, to the QS interaction. In addition, we confirmed inter- and intra-species QS communication between B. japonicum and A. brasilense and, for Azospirillum, at the strain level, impacting several steps of the symbiosis, from cell growth to plant nodulation and growth.


Asunto(s)
Acil-Butirolactonas/metabolismo , Azospirillum brasilense/fisiología , Bradyrhizobium/fisiología , Glycine max/microbiología , Interacciones Microbianas/fisiología , Percepción de Quorum/fisiología , Simbiosis/fisiología , Azospirillum brasilense/genética , Azospirillum brasilense/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Bradyrhizobium/genética , Bradyrhizobium/crecimiento & desarrollo , Brasil , Técnicas de Cocultivo , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum/genética , Proteínas Represoras/genética , Simbiosis/genética , Transactivadores/genética , Factores de Transcripción/genética
2.
Braz J Microbiol ; 51(4): 1977-1986, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32918241

RESUMEN

We evaluated the effect of three different Bradyrhizobium strains inoculated in two soybean genotypes (R01-581F, drought-tolerant, and NA5858RR, drought-sensitive) submitted to drought in two trials conducted simultaneously under greenhouse. The strains (SEMIA 587, SEMIA 5019 (both B. elkanii), and SEMIA 5080 (B. diazoefficiens)) were inoculated individually in each genotype and then submitted to water restriction (or kept well-watered, control) between 45 and 62 days after emergence. No deep changes in plant physiological variables were observed under the moderate water restriction imposed during the first 10 days. Nevertheless, photosynthesis and transpiration decreased after the severe water restriction imposed for further 7 days. Water restriction reduced growth (- 30%) and the number of nodules (- 47% and - 58% for R01-581F and NA5858RR, respectively) of both genotypes, with a negative effect on N-metabolism. The genotype R01-581F inoculated with SEMIA 5019 strain had higher photosynthetic rates compared with NA5858RR, regardless of the Bradyrhizobium strain. On average, R01-581F showed better performance under drought than NA5858RR, with higher number of nodules (51 vs. 38 nodules per plant, respectively) and less accumulation of ureides in petioles (15 µmol g-1 vs. 34 µmol g-1, respectively). Moreover, plants inoculated with SEMIA 5080 had higher glutamine synthetase activity under severe water restriction, especially in the drought-tolerant R01-518F, suggesting maintenance of N metabolism under drought. The Bradyrhizobium strain affects the host plant responses to drought in which the strain SEMIA 5080 improves the drought tolerance of R01-518F genotype.


Asunto(s)
Bradyrhizobium/fisiología , Sequías , Glycine max/microbiología , Glycine max/fisiología , Simbiosis , Bradyrhizobium/clasificación , Genotipo , Fijación del Nitrógeno , Fotosíntesis , Hojas de la Planta/microbiología , Agua
3.
AMB Express ; 8(1): 73, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728787

RESUMEN

The genus Azospirillum comprises plant-growth-promoting bacteria (PGPB), which have been broadly studied. The benefits to plants by inoculation with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen, but also to its capacity to synthesize phytohormones, in particular indole-3-acetic acid. Recently, an increasing number of studies has attributed an important role of Azospirillum in conferring to plants tolerance of abiotic and biotic stresses, which may be mediated by phytohormones acting as signaling molecules. Tolerance of biotic stresses is controlled by mechanisms of induced systemic resistance, mediated by increased levels of phytohormones in the jasmonic acid/ethylene pathway, independent of salicylic acid (SA), whereas in the systemic acquired resistance-a mechanism previously studied with phytopathogens-it is controlled by intermediate levels of SA. Both mechanisms are related to the NPR1 protein, acting as a co-activator in the induction of defense genes. Azospirillum can also promote plant growth by mechanisms of tolerance of abiotic stresses, named as induced systemic tolerance, mediated by antioxidants, osmotic adjustment, production of phytohormones, and defense strategies such as the expression of pathogenesis-related genes. The study of the mechanisms triggered by Azospirillum in plants can help in the search for more-sustainable agricultural practices and possibly reveal the use of PGPB as a major strategy to mitigate the effects of biotic and abiotic stresses on agricultural productivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA