Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
J Biol Chem ; 299(12): 105463, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977221

RESUMEN

Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.


Asunto(s)
Bacterias , Crustáceos , Exosomas , Ferroptosis , Hierro , Sistema Enzimático del Citocromo P-450/metabolismo , Exosomas/metabolismo , Ferroptosis/fisiología , Hierro/metabolismo , Peroxidación de Lípido , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Oxidorreductasas/metabolismo , Proteínas de la Membrana/metabolismo , Antígenos CD36/metabolismo , RNA-Seq , Compuestos Ferrosos/metabolismo , Crustáceos/citología , Crustáceos/genética , Crustáceos/metabolismo , Crustáceos/microbiología , Ácidos Hidroxieicosatetraenoicos , Ácido Araquidónico/metabolismo , Ácidos Grasos/metabolismo , Bacterias/metabolismo
2.
PLoS Pathog ; 17(8): e1009837, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34379706

RESUMEN

It is well known that exosomes could serve as anti-microbial immune factors in animals. However, despite growing evidences have shown that the homeostasis of the hemolymph microbiota was vital for immune regulation in crustaceans, the relationship between exosomes and hemolymph microbiota homeostasis during pathogenic bacteria infection has not been addressed. Here, we reported that exosomes released from Vibrio parahaemolyticus-infected mud crabs (Scylla paramamosain) could help to maintain the homeostasis of hemolymph microbiota and have a protective effect on the mortality of the host during the infection process. We further confirmed that miR-224 was densely packaged in these exosomes, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex, then the released TRAF6 further interacted with Ecsit to regulate the production of mitochondrial ROS (mROS) and the expression of Anti-lipopolysaccharide factors (ALFs) in recipient hemocytes, which eventually affected hemolymph microbiota homeostasis in response to the pathogenic bacteria infection in mud crab. To the best of our knowledge, this is the first document that reports the role of exosome in the hemolymph microbiota homeostasis modulation during pathogen infection, which reveals the crosstalk between exosomal miRNAs and innate immune response in crustaceans.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Braquiuros/inmunología , Exosomas/genética , Hemolinfa/inmunología , Inmunidad Innata/inmunología , MicroARNs/genética , Vibriosis/inmunología , Animales , Proteínas de Artrópodos/genética , Braquiuros/microbiología , Perfilación de la Expresión Génica , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/microbiología , Hemolinfa/metabolismo , Hemolinfa/microbiología , Homeostasis , Microbiota , Filogenia , Vibriosis/microbiología , Vibrio parahaemolyticus/fisiología
3.
J Med Virol ; 95(2): e28520, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36691929

RESUMEN

Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.


Asunto(s)
Quirópteros , Orthoreovirus , Infecciones por Reoviridae , Infecciones del Sistema Respiratorio , Animales , Humanos , Malasia , Filogenia , Genoma Viral , ARN Viral/genética , Orthoreovirus/genética , Genómica
4.
Mol Ecol ; 32(3): 560-574, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36336800

RESUMEN

Migration is typically associated with risk and uncertainty at the population level, but little is known about its cost-benefit trade-offs at the species level. Migratory insects in particular often exhibit strong demographic fluctuations due to local bottlenecks and outbreaks. Here, we use genomic data to investigate levels of heterozygosity and long-term population size dynamics in migratory insects, as an alternative to classical local and short-term approaches such as regional field monitoring. We analyse whole-genome sequences from 97 Lepidoptera species and show that individuals of migratory species have significantly higher levels of genome-wide heterozygosity, a proxy for effective population size, than do nonmigratory species. Also, we contribute whole-genome data for one of the most emblematic insect migratory species, the painted lady butterfly (Vanessa cardui), sampled across its worldwide distributional range. This species exhibits one of the highest levels of genomic heterozygosity described in Lepidoptera (2.95 ± 0.15%). Coalescent modelling (PSMC) shows historical demographic stability in V. cardui, and high effective population size estimates of 2-20 million individuals 10,000 years ago. The study reveals that the high risks associated with migration and local environmental fluctuations do not seem to decrease overall genetic diversity and demographic stability in migratory Lepidoptera. We propose a "compensatory" demographic model for migratory r-strategist organisms in which local bottlenecks are counterbalanced by reproductive success elsewhere within their typically large distributional ranges. Our findings highlight that the boundaries of populations are substantially different for sedentary and migratory insects, and that, in the latter, local and even regional field monitoring results may not reflect whole population dynamics. Genomic diversity patterns may elucidate key aspects of an insect's migratory nature and population dynamics at large spatiotemporal scales.


Asunto(s)
Mariposas Diurnas , Humanos , Animales , Mariposas Diurnas/genética , Migración Animal , Insectos , Densidad de Población , Variación Genética/genética
5.
BMC Public Health ; 23(1): 737, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085811

RESUMEN

BACKGROUND: Streptococcus suis (S.suis) is a neglected zoonotic disease that imposes a significant economic burden on healthcare and society. To our knowledge, studies estimating the cost of illness associated with S.suis treatment are limited, and no study focuses on treatment costs and potential key drivers in Thailand. This study aimed to estimate the direct medical costs associated with S.suis treatment in Thailand and identify key drivers affecting high treatment costs from the provider's perspective. METHODS: A retrospective analysis of the 14-year data from 2005-2018 of confirmed S.suis patients admitted at Chiang Mai University Hospital (CMUH) was conducted. Descriptive statistics were used to summarize the data of patients' characteristics, healthcare utilization and costs. The multiple imputation with predictive mean matching strategy was employed to deal with missing Glasgow Coma Scale (GCS) data. Generalized linear models (GLMs) were used to forecast costs model and identify determinants of costs associated with S.suis treatment. The modified Park test was adopted to determine the appropriate family. All costs were inflated applying the consumer price index for medical care and presented to the year 2019. RESULTS: Among 130 S.suis patients, the average total direct medical cost was 12,4675 Thai baht (THB) (US$ 4,016), of which the majority of expenses were from the "others" category (room charges, staff services and medical devices). Infective endocarditis (IE), GCS, length of stay, and bicarbonate level were significant predictors associated with high total treatment costs. Overall, marginal increases in IE and length of stay were significantly associated with increases in the total costs (standard error) by 132,443 THB (39,638 THB) and 5,490 THB (1,715 THB), respectively. In contrast, increases in GCS and bicarbonate levels were associated with decreases in the total costs (standard error) by 13,118 THB (5,026 THB) and 7,497 THB (3,430 THB), respectively. CONCLUSIONS: IE, GCS, length of stay, and bicarbonate level were significant cost drivers associated with direct medical costs. Patients' clinical status during admission significantly impacts the outcomes and total treatment costs. Early diagnosis and timely treatment were paramount to alleviate long-term complications and high healthcare expenditures.


Asunto(s)
Streptococcus suis , Humanos , Tailandia/epidemiología , Estudios Retrospectivos , Bicarbonatos , Costos de la Atención en Salud , Hospitales Universitarios
6.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902078

RESUMEN

Matrix metalloproteinase-12 (MMP12), or macrophage metalloelastase, plays important roles in extracellular matrix (ECM) component degradation. Recent reports show MMP12 has been implicated in the pathogenesis of periodontal diseases. To date, this review represents the latest comprehensive overview of MMP12 in various oral diseases, such as periodontitis, temporomandibular joint dysfunction (TMD), orthodontic tooth movement (OTM), and oral squamous cell carcinoma (OSCC). Furthermore, the current knowledge regarding the distribution of MMP12 in different tissues is also illustrated in this review. Studies have implicated the association of MMP12 expression with the pathogenesis of several representative oral diseases, including periodontitis, TMD, OSCC, OTM, and bone remodelling. Although there may be a potential role of MMP12 in oral diseases, the exact pathophysiological role of MMP12 remains to be elucidated. Understanding the cellular and molecular biology of MMP12 is essential, as MMP12 could be a potential target for developing therapeutic strategies targeting inflammatory and immunologically related oral diseases.


Asunto(s)
Metaloproteinasa 12 de la Matriz , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/enzimología , Metaloproteinasa 12 de la Matriz/metabolismo , Neoplasias de la Boca/enzimología , Periodontitis/patología
7.
Virol J ; 19(1): 36, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246187

RESUMEN

BACKGROUND: Despite the clinical burden attributable to rhinovirus (RV) infections, the RV transmission dynamics and the impact of interventions on viral transmission remain elusive. METHODS: A total of 3,935 nasopharyngeal specimens were examined, from which the VP4/VP2 gene was sequenced and genotyped. RV transmission clusters were reconstructed using the genetic threshold of 0.005 substitutions/site, estimated from the global VP4/VP2 sequences. A transmission cluster is characterized by the presence of at least two individuals (represent by nodes), whose viral sequences are genetically linked (represent by undirected edges) at the estimated genetic distance threshold supported by bootstrap value of ≥ 90%. To assess the impact of facemask, pleconaril and social distancing on RV transmission clusters, trials were simulated for interventions with varying efficacy and were evaluated based on the reduction in the number of infected patients (nodes) and the reduction in the number of nodes-connecting edges. The putative impact of intervention strategies on RV transmission clusters was evaluated through 10,000 simulations. RESULTS: A substantial clustering of 168 RV transmission clusters of varying sizes were observed. This suggests that RV disease burden observed in the population was largely due to multiple sub-epidemics, predominantly driven by RV-A, followed by RV-C and -B. No misclassification of RV species and types were observed, suggesting the specificity and sensitivity of the analysis. Through 10,000 simulations, it was shown that social distancing may be effective in decelerating RV transmission, by removing more than 95% of nodes and edges within the RV transmission clusters. However, facemask removed less than 8% and 66% of nodes and edges, respectively, conferring moderate advantage in limiting RV transmission. CONCLUSION: Here, we presented a network-based approach of which the degree of RV spread that fuel disease transmission in the region was mapped for the first time. The utilization of RV transmission clusters in assessing the putative impact of interventions on disease transmission at the population level was demonstrated.


Asunto(s)
Infecciones por Enterovirus , Infecciones por Picornaviridae , Infecciones del Sistema Respiratorio , Genotipo , Humanos , Nasofaringe , Filogenia , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/prevención & control , Rhinovirus/genética
8.
Antonie Van Leeuwenhoek ; 115(8): 995-1007, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35674967

RESUMEN

In this study, a novel bacterium designated F3b2T was isolated from the gut sample of weaver ant Oecophylla smaragdina and characterised. Strain F3b2T was a Gram-negative, aerobic, non-motile, ovoid-shaped bacterium and grows optimally at 28-30 °C. Its major respiratory quinone is ubiquinone 10 (Q-10) and the major fatty acids are C18:1 ω7c, C19:0 cyclo ω8c and C16:0, representing 85% of the total fatty acids. The 16S rRNA gene sequence of strain F3b2T was highest in similarity to that of Oecophyllibacter saccharovorans DSM106907T and Swingsia samuieinsis NBRC 107927T at 94.35% and 91.96%, respectively. A 16S rRNA gene-based phylogenetic analysis and a core genes-based phylogenomic analysis placed strain F3b2T in a distinct lineage in the family Acetobacteraceae. The phylogenetic placement was supported by lower than species delineation threshold average nucleotide identity (ANI) (≤ 70.2%), in silico DNA-DNA hybridization (DDH) (≤ 39.5%) and average amino acid identity (AAI) (≤ 63.5%) values between strain F3b2T and closest neighbours. These overall genome relatedness indices also supported the assignment of strain F3b2T to a novel genus within Acetobacteraceae. The genome of strain F3b2T was 1.96 Mb with 60.4% G + C DNA content. Based on these results, strain F3b2T represented a novel taxon of Acetobacteraceae, for which we proposed the name Formicincola oecophyllae gen. nov. sp. nov., and strain F3b2T (= LMG 30590T = DSM 106908T = NBRC 113640T = KCTC 62951T) as the type strain.


Asunto(s)
Acetobacteraceae , Hormigas , Acetobacteraceae/genética , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
9.
Genomics ; 113(6): 4352-4360, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34793950

RESUMEN

Agrobacterium tumefaciens is considered a prominent phytopathogen, though most isolates are nonpathogenic. Agrobacteria can inhabit plant tissues interacting with other microorganisms. Yeasts are likewise part of these communities. We analyzed the quorum sensing (QS) systems of A. tumefaciens strain 6N2, and its relevance for the interaction with the yeast Meyerozyma guilliermondii, both sugarcane endophytes. We show that strain 6N2 is nonpathogenic, produces OHC8-HSL, OHC10-HSL, OC12-HSL and OHC12-HSL as QS signals, and possesses a complex QS architecture, with one truncated, two complete systems, and three additional QS-signal receptors. A proteomic approach showed differences in QS-regulated proteins between pure (64 proteins) and dual (33 proteins) cultures. Seven proteins were consistently regulated by quorum sensing in pure and dual cultures. M. guilliermondii proteins influenced by QS activity were also evaluated. Several up- and down- regulated proteins differed depending on the bacterial QS. These results show the QS regulation in the bacteria-yeast interactions.


Asunto(s)
Percepción de Quorum , Saccharomycetales , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteómica , Saccharomycetales/genética , Saccharomycetales/metabolismo
10.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430760

RESUMEN

Periodontal diseases are predisposing factors to the development of many systemic disorders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases could significantly affect human health and quality of life. Hence, it is vital to explore effective therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding, disruption of the gingival capillary's integrity, and irreversible destruction of the periodontal supporting bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-, and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune responses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic targets for periodontal disorders and their associated systemic diseases since they play a crucial role in immune regulation and endothelium dysfunction. However, the research on selectins and their association with periodontal and systemic diseases remains limited. This review aims to discuss the critical roles of selectins in periodontitis and associated systemic disorders and highlights the potential of selectins as therapeutic targets.


Asunto(s)
Enfermedades Periodontales , Periodontitis , Enfermedades Vasculares , Humanos , Calidad de Vida , Células Endoteliales , Selectinas , Enfermedades Periodontales/terapia , Inmunoterapia , Periodontitis/terapia , Factores Inmunológicos
11.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293339

RESUMEN

The increasing prevalence of resistance in carbapenems is an escalating concern as carbapenems are reserved as last-line antibiotics. Although indiscriminate antibiotic usage is considered the primary cause for resistance development, increasing evidence revealed that inconsequential strains without any direct clinical relevance to carbapenem usage are harboring carbapenemase genes. This phenomenon indirectly implies that environmental microbial populations could be the 'hidden vectors' propelling carbapenem resistance. This work aims to explore the carbapenem-resistance profile of Vibrio species across diverse settings. This review then proceeds to identify the different factors contributing to the dissemination of the resistance traits and defines the transmission pathways of carbapenem resistance. Deciphering the mechanisms for carbapenem resistance acquisition could help design better prevention strategies to curb the progression of antimicrobial resistance development. To better understand this vast reservoir selecting for carbapenem resistance in non-clinical settings, Vibrio species is also prospected as one of the potential indicator strains for carbapenem resistance in the environment.


Asunto(s)
Vibrio , beta-Lactamasas , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Vibrio/genética , Vibrio/metabolismo , Pruebas de Sensibilidad Microbiana
12.
Mol Ecol ; 30(2): 608-624, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33226678

RESUMEN

Invasive pathogens can be a threat when they affect human health, food production or ecosystem services, by displacing resident species, and we need to understand the cause of their establishment. We studied the patterns and causes of the establishment of the pathogen Dickeya solani that recently invaded potato agrosystems in Europe by assessing its invasion dynamics and its competitive ability against the closely related resident D. dianthicola species. Epidemiological records over one decade in France revealed the establishment of D. solani and the maintenance of the resident D. dianthicola in potato fields exhibiting blackleg symptoms. Using experimentations, we showed that D. dianthicola caused a higher symptom incidence on aerial parts of potato plants than D. solani, while D. solani was more aggressive on tubers (i.e. with more severe symptoms). In co-infection assays, D. dianthicola outcompeted D. solani in aerial parts, while the two species co-existed in tubers. A comparison of 76 D. solani genomes (56 of which have been sequenced here) revealed balanced frequencies of two previously uncharacterized alleles, VfmBPro and VfmBSer , at the vfmB virulence gene. Experimental inoculations showed that the VfmBSer population was more aggressive on tubers, while the VfmBPro population outcompeted the VfmBSer population in stem lesions, suggesting an important role of the vfmB virulence gene in the ecology of the pathogens. This study thus brings novel insights allowing a better understanding of the pattern and causes of the D.solani invasion into potato production agrosystems, and the reasons why the endemic D. dianthicola nevertheless persisted.


Asunto(s)
Dickeya/patogenicidad , Enfermedades de las Plantas/microbiología , Solanum tuberosum , Ecosistema , Europa (Continente) , Francia , Solanum tuberosum/microbiología
13.
Plasmid ; 114: 102559, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476637

RESUMEN

The bacterium Oecophyllibacter saccharovorans of family Acetobacteraceae is a symbiont of weaver ant Oecophylla smaragdina. In our previous study, we published the finding of novel O. saccharovorans strains Ha5T, Ta1 and Jb2 (Chua et al. 2020) but their plasmid sequences have not been reported before. Here, we demonstrate for the first time that the sole rrn operon of their genomes was detected on a 6.6 kb circular replicon. This replicon occurred in high copy number, much smaller size and lower G + C content than the main chromosome. Based on these features, the 6.6 kb circular replicon was regarded as rrn operon-containing plasmid. Further restriction analysis on the plasmids confirmed their circular conformation. A Southern hybridization analysis also corroborated the presence of 16S rRNA gene and thus the rrn operon on a single locus in the genome of the O. saccharovorans strains. However, similar genome architecture was not observed in other closely related bacterial strains. Additional survey also detected no plasmid-borne rrn operon in available genomes of validly described taxa of family Acetobacteraceae. To date, plasmid localization of rrn operon is rarely documented. This study reports the occurrence of rrn operon on the smallest bacterial plasmid in three O. saccharovorans strains and discusses its possible importance in enhancing their competitive fitness as bacterial symbiont of O. smaragdina.


Asunto(s)
Acetobacteraceae , Composición de Base , Operón , Plásmidos/genética , ARN Ribosómico 16S
14.
BMC Infect Dis ; 21(1): 446, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001016

RESUMEN

BACKGROUND: Coxsackievirus A21 (CVA21), a member of Enterovirus C from the Picornaviridae family, has been associated with respiratory illnesses in humans. METHODS: A molecular epidemiological investigation of CVA21 was conducted among patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014 in Kuala Lumpur, Malaysia. RESULTS: Epidemiological surveillance of acute respiratory infections (n = 3935) showed low-level detection of CVA21 (0.08%, 1.4 cases/year) in Kuala Lumpur, with no clear seasonal distribution. Phylogenetic analysis of the new complete genomes showed close relationship with CVA21 strains from China and the United States. Spatio-temporal mapping of the VP1 gene determined 2 major clusters circulating worldwide, with inter-country lineage migration and strain replacement occurring over time. CONCLUSIONS: The study highlights the emerging role of CVA21 in causing sporadic acute respiratory outbreaks.


Asunto(s)
Infecciones por Coxsackievirus/diagnóstico , Enterovirus/genética , Variación Genética , Infecciones del Sistema Respiratorio/diagnóstico , Adolescente , Adulto , Proteínas de la Cápside/clasificación , Proteínas de la Cápside/genética , Infecciones por Coxsackievirus/epidemiología , Infecciones por Coxsackievirus/virología , Brotes de Enfermedades , Enterovirus/clasificación , Enterovirus/aislamiento & purificación , Femenino , Humanos , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Filogenia , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología
15.
Mol Biol Rep ; 48(8): 6047-6056, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34357549

RESUMEN

BACKGROUND: Tephritid fruit flies of the genus Dacus are members of the tribe Dacini, subfamily Dacinae. There are some 274 species worldwide, distributed in Africa and the Asia-Pacific. To date, only five complete mitochondrial genomes (mitogenomes) of Dacus fruit flies have been published and are available in the GenBank. METHODS AND RESULTS: In view of the lack of study on their mitogenome, we sequenced (by next generation sequencing) and annotated the complete mitogenome of D. vijaysegarani from Malaysia to determine its features and phylogenetic relationship. The whole mitogenome of D. vijaysegarani has identical gene order with the published mitogenomes of the genus Dacus, with 13 protein-coding genes, two rRNA genes, 22 tRNAs, a non-coding A + T rich control region, and intergenic spacer and overlap sequences. Phylogenetic analysis based on 15 mitochondrial genes (13 PCGs and two rRNA genes), reveals Dacus, Zeugodacus and Bactrocera forming a distinct clade. The genus Dacus forms a monophyletic group in the subclade containing also the Zeugodacus group; this Dacus-Zeugodacus subclade is distinct from the Bactrocera subclade. D. (Mellesis) vijaysegarani forms a lineage with D. (Mellesis) trimacula in the subcluster containing also the lineage of D. (Mellesis) conopsoides and D. (Callantra) longicornis. D. (Dacus) bivittatus and D. (Didacus) ciliatus form a distinct subcluster. Based on cox1 sequences, the Malaysia and Vietnam taxa of D. vijaysegarani may not be conspecific. CONCLUSIONS: Overall, the mitochondrial genome of D. vijaysegarani provided essential molecular data that could be useful for further studies for species diagnosis, evolution and phylogeny research of other tephritid fruit flies in the future.


Asunto(s)
Genoma Mitocondrial/genética , Tephritidae/genética , Animales , Composición de Base/genética , Secuencia de Bases/genética , ADN Mitocondrial/genética , Dípteros/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Insectos/genética , Filogenia , Análisis de Secuencia de ADN/métodos
16.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071337

RESUMEN

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


Asunto(s)
Antibacterianos/química , Arecaceae/química , Celulosa/química , Nanocompuestos/química , Nanofibras/química , Óxido de Zinc/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Microscopía Electrónica , Nanocompuestos/ultraestructura , Nanofibras/ultraestructura , Tamaño de la Partícula , Goma/química , Salmonella/efectos de los fármacos , Salmonella/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
17.
Medicina (Kaunas) ; 57(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672384

RESUMEN

The global pandemic of the coronavirus disease 2019 is a known consequence of infection of severe respiratory syndrome coronavirus-2 (SARS-CoV-2). It has affected nations worldwide with soaring number of cases daily. Symptoms such as fever, cough, and shortness of breath, diarrhea, nausea and vomiting are commonly presented in COVID-19 patients. This focused review aims to discuss these uncommon and atypical COVID-19 symptoms that may be presented which might affect neurological, cardiovascular, cutaneous and ocular systems and their possible mode of actions. Nonetheless, there are some cases of reported uncommon or atypical symptoms which may warrant healthcare professionals to be aware of, especially when in contact with patients. The knowledge and information concerning these symptoms might be able to provide additional cues for healthcare professional by subjecting patients to COVID-19 screening. Meanwhile, it might be able to further enhance the alertness and additional precautions being taken by healthcare personnel, which eventually lead to reduced risk of infections.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Tamizaje Masivo/métodos , SARS-CoV-2 , Evaluación de Síntomas/métodos , Humanos
18.
Nucleic Acids Res ; 46(13): 6823-6840, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29718466

RESUMEN

Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In Pseudomonas aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Alginatos/metabolismo , Proteínas Bacterianas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Genoma Bacteriano , Polisacáridos Bacterianos/biosíntesis , Pseudomonas aeruginosa/metabolismo , ARN Pequeño no Traducido/metabolismo , Regulón , Proteínas Represoras/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
19.
Molecules ; 25(15)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756432

RESUMEN

There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/química , Biopelículas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Microbiología del Suelo , Streptomyces/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Malasia , Staphylococcus aureus Resistente a Meticilina/fisiología , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Fenotipo , Filogenia , Sintasas Poliquetidas/genética , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Streptomyces/clasificación , Streptomyces/aislamiento & purificación
20.
Molecules ; 25(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212836

RESUMEN

Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Rhizophoraceae/microbiología , Streptomyces/química , Animales , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Mezclas Complejas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA