Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37896393

RESUMEN

In this study, short-term accelerated creep tests were conducted using the stepped isostress method (SSM) to investigate the impact of hydrothermal treatment on the long-term creep behaviour of Japanese cedar wood and to determine optimal hydrothermal treatment conditions. The results showed that SSM can effectively predict the creep behaviour of hydrothermally treated wood. Among the treatment conditions tested, Japanese cedar wood treated hydrothermally at 180 °C for 4 h exhibited higher flexural strength retention (91%) and moisture excluding efficiency (MEE) (44%) and demonstrated superior creep resistance compared to untreated wood. When subjected to a 30% average breaking load (ABL) over 20 years, the specimen's creep compliance, instantaneous creep compliance, b value, activation volume, and improvement in creep resistance (ICR) were 0.17 GPa-1, 0.139 GPa-1, 0.15, 1.619 nm3, and 4%, respectively. The results indicate that subjecting Japanese cedar wood to hydrothermal treatment at 180 °C for 4 h has a negligible effect on its flexural properties but results in significant improvements in both dimensional stability and creep resistance.

2.
Polymers (Basel) ; 13(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34451222

RESUMEN

The purpose of this study is to compare the characteristics of wood-plastic composites (WPCs) made of polypropylene (PP) and wood fibers (WFs) from discarded stems, branches, and roots of pomelo trees. The results show that the WPCs made of 30-60 mesh WFs from stems have better physical, flexural, and tensile properties than other WPCs. However, the flexural strengths of all WPCs are not only comparable to those of commercial wood-PP composites but also meet the strength requirements of the Chinese National Standard for exterior WPCs. In addition, the color change of WPCs that contained branch WFs was lower than that of WPCs that contained stem or root WFs during the initial stage of the accelerated weathering test, but the surface color parameters of all WPCs were very similar after 500 h of xenon arc accelerated weathering. Scanning electron microscope (SEM) micrographs showed many cracks on the surfaces of WPCs after accelerated weathering for 500 h, but their flexural modulus of rupture (MOR) and modulus of elasticity (MOE) values did not differ significantly during weathering. Thus, all the discarded parts of pomelo trees can be used to manufacture WPCs, and there were no significant differences in their weathering properties during 500 h of xenon arc accelerated weathering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA