Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Can J Microbiol ; 70(7): 262-274, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700083

RESUMEN

Cryptosporidium and Giardia are protozoan parasites responsible for gastrointestinal illnesses in humans and in animal species. The main way these parasites are transmitted is by ingestion of their (oo)cysts in drinking water. Monitoring (oo)cysts in water sources is beneficial to evaluate the quality of raw water supplying treatment plants. Currently, the only standardized protocol to enumerate these parasites from water samples is United States Environmental Protection Agency (USEPA) Method 1623.1. With this method, we monitored three major water sources in Quebec over a year to assess temporal and geographical variations of these parasite (oo)cysts. These three water sources have independent watersheds despite being in the same region. We found a general pattern for Giardia, with high concentrations of cysts during cold and transition periods, and significantly lower concentrations during the warm period. Cryptosporidium's concentration was more variable throughout the year. Statistical correlations (Pearson's correlation coefficients) were established between the concentration of each parasite and various environmental parameters. The three study sites each showed unique factors correlating with the presence of both protozoa, supporting the idea that each water source must be seen as a unique entity with its own particular characteristics and therefore, must be monitored independently. Although some environmental parameters could be interesting proxies to the parasitic load, no parameter was strongly correlated throughout the whole sampling year and none of the parameters could be used as a single proxy for all three studies sources.


Asunto(s)
Cryptosporidium , Giardia , Cryptosporidium/aislamiento & purificación , Quebec , Giardia/aislamiento & purificación , Monitoreo del Ambiente/métodos , Agua Potable/parasitología , Estaciones del Año , Abastecimiento de Agua , Humanos
2.
BMC Genomics ; 24(1): 93, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859182

RESUMEN

BACKGROUND: The quorum-sensing molecule farnesol, in opportunistic yeast Candida albicans, modulates its dimorphic switch between yeast and hyphal forms, and biofilm formation. Although there is an increasing interest in farnesol as a potential antifungal drug, the molecular mechanism by which C. albicans responds to this molecule is still not fully understood. RESULTS: A comparative genomic analysis between C. albicans strains that are naturally unresponsive to 30 µM of farnesol on TYE plates at 37 °C versus responsive strains uncovered new molecular determinants involved in the response to farnesol. While no signature gene was identified, amino acid changes in specific proteins were shown to correlate with the unresponsiveness to farnesol, particularly with substitutions in proteins known to be involved in the farnesol response. Although amino acid changes occur primarily in disordered regions of proteins, some amino acid changes were also found in known domains. Finally, the genomic investigation of intermediate-response strains showed that the non-response to farnesol occurs gradually following the successive accumulation of amino acid changes at specific positions. CONCLUSION: It is known that large genomic changes, such as recombinations and gene flow (losses and gains), can cause major phenotypic changes in pathogens. However, it is still not well known or documented how more subtle changes, such as amino acid substitutions, play a role in the adaptation of pathogens. The present study shows that amino acid changes can modulate C. albicans yeast's response to farnesol. This study also improves our understanding of the network of proteins involved in the response to farnesol, and of the involvement of amino acid substitutions in cellular behavior.


Asunto(s)
Candida albicans , Farnesol , Sustitución de Aminoácidos , Aminoácidos , Aclimatación
3.
Genome ; 66(5): 108-115, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36780641

RESUMEN

All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.


Asunto(s)
Aeromonas salmonicida , Dictyostelium , Animales , Aeromonas salmonicida/genética , Filogenia , Canadá , Análisis por Conglomerados
4.
Arch Virol ; 168(2): 72, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670249

RESUMEN

Aeromonas salmonicida subsp. salmonicida causes furunculosis, a major infection that affects fish farms worldwide. We isolated phage vB_AsaM_LPM4 (LPM4) from a diseased fish. Based on its DNA sequence, LPM4 is identical to the uncharacterized Prophage 3, a prophage present mostly in North American A. salmonicida subsp. salmonicida isolates that bear the genomic island AsaGEI2a. Prophage 3 and AsaGEI2a are inserted side by side in the bacterial chromosome. The LPM4/Prophage 3 sequence is similar to that of other prophages found in various members of the genus Aeromonas. LPM4 specifically infects A. salmonicida subsp. salmonicida strains that do not already bear Prophage 3. The presence of an A-layer on the surface of the bacteria is not necessary for the adsorption of phage LPM4 but seems to facilitate its infection process. We also successfully produced lysogenic strains that bear Prophage 3 using sensitive strains with different genetic backgrounds, suggesting that there is no interdependency between LPM4 and AsaGEIs. PCR analysis of the excision dynamics of Prophage 3 and AsaGEIs revealed that these genetic elements can spontaneously excise themselves from the bacterial chromosome independently of one another. Through the isolation and characterization of LPM4, this study reveals new facets of Prophage 3 and AsaGEIs.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Enfermedades de los Peces , Forunculosis , Animales , Profagos/genética , Aeromonas salmonicida/genética , Forunculosis/microbiología , Peces , Enfermedades de los Peces/microbiología
5.
J Fish Dis ; 45(1): 177-184, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748248

RESUMEN

Aeromonas salmonicida subspecies salmonicida, a fish pathogen, expresses various virulence factors such as an A-layer, lipases and proteases during the infection process. Not all strains of this bacterium express the same virulence factors. It is important to be able to evaluate which factors are present when characterizing strains. The A-layer and secreted lipases and proteases are usually detected by agar-based tests that require long incubation (24 h and more) and may provide ambiguous results. In the present study, protocols have been optimized to determine the presence of these virulence factors using liquid tests. For A-layer detection, the optimized method stains the positive bacteria with Coomassie Brilliant Blue. The lipases are detected by a colorimetric biochemical reaction triggered by the degradation of p-nitrophenyl dodecanoate into a yellow product detectable by spectrophotometry, if the result is positive. Both of these tests show results in less than an hour. Finally, the protease activity is measured by clarification of a medium containing milk during an overnight bacterial growth. These new protocols provide opportunities for quicker characterization of A. salmonicida subsp. salmonicida strains and, particularly, provide more precise results.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Enfermedades de los Peces , Animales , Virulencia , Factores de Virulencia/genética
6.
J Biol Chem ; 295(26): 8708-8724, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32371400

RESUMEN

Mammalian acetylcholinesterase (AChE) is well-studied, being important in both cholinergic brain synapses and the peripheral nervous systems and also a key drug target for many diseases. In contrast, little is known about the structures and molecular mechanism of prokaryotic acetylcholinesterases. We report here the structural and biochemical characterization of ChoE, a putative bacterial acetylcholinesterase from Pseudomonas aeruginosa Analysis of WT and mutant strains indicated that ChoE is indispensable for P. aeruginosa growth with acetylcholine as the sole carbon and nitrogen source. The crystal structure of ChoE at 1.35 Å resolution revealed that this enzyme adopts a typical fold of the SGNH hydrolase family. Although ChoE and eukaryotic AChEs catalyze the same reaction, their overall structures bear no similarities constituting an interesting example of convergent evolution. Among Ser-38, Asp-285, and His-288 of the catalytic triad residues, only Asp-285 was not essential for ChoE activity. Combined with kinetic analyses of WT and mutant proteins, multiple crystal structures of ChoE complexed with substrates, products, or reaction intermediate revealed the structural determinants for substrate recognition, snapshots of the various catalytic steps, and the molecular basis of substrate inhibition at high substrate concentrations. Our results indicate that substrate inhibition in ChoE is due to acetate release being blocked by the binding of a substrate molecule in a nonproductive mode. Because of the distinct overall folds and significant differences of the active site between ChoE and eukaryotic AChEs, these structures will serve as a prototype for other prokaryotic acetylcholinesterases.


Asunto(s)
Acetilcolinesterasa/metabolismo , Pseudomonas aeruginosa/enzimología , Acetilcolinesterasa/química , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Conformación Proteica , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Especificidad por Sustrato
7.
Microbiology (Reading) ; 167(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33945463

RESUMEN

The bacterial species Aeromonas salmonicida is a fish pathogen. Feared by fish farmers everywhere on Earth over the past century, this species has turned out to be more diverse than initially suspected. While some psychrophilic subspecies cannot grow at temperatures above 25 °C or 30 °C, other mesophilic strains growing up to 37 °C and above are now characterized. Adding to the surprising diversity of this species, some of the mesophilic strains infect mammals and birds. The remarkable diversity is explained in part by the presence of numerous mobile genetic elements, which sculpt and modify the genome of the various strains of this species.


Asunto(s)
Aeromonas salmonicida/fisiología , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Aeromonas salmonicida/genética , Aeromonas salmonicida/crecimiento & desarrollo , Aeromonas salmonicida/aislamiento & purificación , Animales , Biodiversidad , Elementos Transponibles de ADN , Peces/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Temperatura
8.
Brief Bioinform ; 20(6): 1981-1996, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30084940

RESUMEN

It is easy for today's students and researchers to believe that modern bioinformatics emerged recently to assist next-generation sequencing data analysis. However, the very beginnings of bioinformatics occurred more than 50 years ago, when desktop computers were still a hypothesis and DNA could not yet be sequenced. The foundations of bioinformatics were laid in the early 1960s with the application of computational methods to protein sequence analysis (notably, de novo sequence assembly, biological sequence databases and substitution models). Later on, DNA analysis also emerged due to parallel advances in (i) molecular biology methods, which allowed easier manipulation of DNA, as well as its sequencing, and (ii) computer science, which saw the rise of increasingly miniaturized and more powerful computers, as well as novel software better suited to handle bioinformatics tasks. In the 1990s through the 2000s, major improvements in sequencing technology, along with reduced costs, gave rise to an exponential increase of data. The arrival of 'Big Data' has laid out new challenges in terms of data mining and management, calling for more expertise from computer science into the field. Coupled with an ever-increasing amount of bioinformatics tools, biological Big Data had (and continues to have) profound implications on the predictive power and reproducibility of bioinformatics results. To overcome this issue, universities are now fully integrating this discipline into the curriculum of biology students. Recent subdisciplines such as synthetic biology, systems biology and whole-cell modeling have emerged from the ever-increasing complementarity between computer science and biology.


Asunto(s)
Biología Computacional/historia , Animales , ADN/química , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Proteínas/química
9.
Arch Virol ; 166(2): 521-533, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33394168

RESUMEN

Aeromonas salmonicida strains cause problematic bacterial infections in the aquaculture industry worldwide. The genus Aeromonas includes both mesophilic and psychrophilic species. Bacteriophages that infect Aeromonas spp. strains are usually specific for mesophilic or psychrophilic species; only a few bacteriophages can infect both types of strains. In this study, we characterized the podophage T7-Ah, which was initially found to infect the Aeromonas salmonicida HER1209 strain. The burst size of T7-Ah against its original host is 72 new virions per infected cell, and its burst time is 30 minutes. It has been found that this phage can lyse both mesophilic and psychrophilic A. salmonicida strains, as well as one strain of Escherichia coli. Its genome comprises 40,153 bp of DNA and does not contain any recognizable toxin or antibiotic resistance genes. The adsorption rate of the phage on highly sensitive bacterial strains was variable and could not be related to the presence or absence of a functional A-layer on the surface of the bacterial strains. The lipopolysaccharide migration patterns of both resistant and sensitive bacterial strains were also studied and compared to investigate the nature of the potential receptor of this phage on the bacterial surface. This study sheds light on the surprising diversity of lifestyles of the bacterial strains sensitive to phage T7-Ah and opens the door to the potential use of this phage against A. salmonicida infections in aquaculture.


Asunto(s)
Aeromonas salmonicida/virología , Bacteriófago T7/genética , Bacteriófago T7/patogenicidad , Acuicultura , Genoma Viral/genética , Especificidad del Huésped/genética
10.
Mol Microbiol ; 112(2): 667-677, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31115938

RESUMEN

Aeromonas salmonicida subsp. salmonicida is a fish pathogen that causes furunculosis. Antibiotherapy used to treat furunculosis in fish has led to resistance. Virulent phages are increasingly seen as alternatives or complementary treatments against furunculosis in aquaculture environments. For phage therapy to be successful, it is essential to study the natural mechanisms of phage resistance in A. salmonicida subsp. salmonicida. Here, we generated bacteriophage-insensitive mutants (BIMs) of A. salmonicida subsp. salmonicida, using a myophage with broad host range and characterized them. Phage plaques were different depending on whether the A-layer surface array protein was expressed or not. The genome analysis of the BIMs helped to identify mutations in genes involved in the biogenesis of lipopolysaccharides (LPS) and on an uncharacterized gene (ASA_1998). The characterization of the LPS profile and gene complementation assays identified LPS as a phage receptor and confirmed the involvement of the uncharacterized protein ASA_1998 in phage infection. In addition, we confirmed that the presence of an A-layer at the bacterial surface could act as protection against phages. This study brings new elements into our understanding of the phage adsorption to A. salmonicida subsp. salmonicida cells.


Asunto(s)
Aeromonas salmonicida/metabolismo , Aeromonas salmonicida/virología , Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Lipopolisacáridos/metabolismo , Acoplamiento Viral , Adsorción , Aeromonas salmonicida/genética , Animales , Proteínas Bacterianas/genética , Bacteriófagos/genética , Enfermedades de los Peces/microbiología , Peces , Forunculosis/microbiología , Mutación
11.
Transfusion ; 60(5): 1032-1041, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32237236

RESUMEN

BACKGROUND: Great deformability allows red blood cells (RBCs) to flow through narrow capillaries in tissues. A number of microfluidic devices with capillary-like microchannels have been developed to monitor storage-related impairment of RBC deformability during blood banking operations. This proof-of-concept study describes a new method to standardize and improve reproducibility of the RBC deformability measurements using one of these devices. STUDY DESIGN AND METHODS: The rate of RBC flow through the microfluidic capillary network of the microvascular analyzer (MVA) device made of polydimethylsiloxane was measured to assess RBC deformability. A suspension of microbeads in a solution of glycerol in phosphate-buffered saline was developed to be used as an internal flow rate reference alongside RBC samples in the same device. RBC deformability and other in vitro quality markers were assessed weekly in six leukoreduced RBC concentrates (RCCs) dispersed in saline-adenine-glucose-mannitol additive solution and stored over 42 days at 4°C. RESULTS: The use of flow reference reduced device-to-device measurement variability from 10% to 2%. Repeated-measure analysis using the generalized estimating equation (GEE) method showed a significant monotonic decrease in relative RBC flow rate with storage from Week 0. By the end of storage, relative RBC flow rate decreased by 22 ± 6% on average. CONCLUSIONS: The suspension of microbeads was successfully used as a flow reference to increase reproducibility of RBC deformability measurements using the MVA. Deformability results suggest an early and late aging phase for stored RCCs, with significant decreases between successive weeks suggesting a highly sensitive measurement method.


Asunto(s)
Deformación Eritrocítica/fisiología , Eritrocitos/citología , Eritrocitos/fisiología , Dispositivos Laboratorio en un Chip/normas , Técnicas Analíticas Microfluídicas , Bancos de Sangre/normas , Velocidad del Flujo Sanguíneo/fisiología , Conservación de la Sangre/efectos adversos , Conservación de la Sangre/métodos , Conservación de la Sangre/normas , Criopreservación , Recuento de Eritrocitos/instrumentación , Recuento de Eritrocitos/métodos , Recuento de Eritrocitos/normas , Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Citometría de Flujo/normas , Hemólisis , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/normas , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Factores de Tiempo , Almacenamiento de Sangre/métodos
12.
Can J Microbiol ; 66(12): 679-688, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32735763

RESUMEN

Multilamellar bodies (MLBs), structures composed of concentric membrane layers, are known to be produced by different protozoa, including species of ciliates, free-living amoebae, and Dictyostelium discoideum social amoebae. Initially believed to be metabolic waste, potential roles like cell communication and food storage have been suggested for D. discoideum MLBs, which could be useful for the multicellular development of social amoebae and as a food source. However, among dictyostelids, this phenomenon has only been observed with D. discoideum, and mainly with laboratory strains grown in axenic conditions. It was thought that other social amoebae may also produce MLBs. Four environmental social amoeba isolates were characterized. All strains belong to the Dictyostelium genus, including some likely to be Dictyostelium giganteum. They have distinctive phenotypes comprising their growth rate on Klebsiella aerogenes lawns and the morphology of their fruiting bodies. They all produce MLBs like those produced by a D. discoideum laboratory strain when grown on K. aerogenes lawns, as revealed by analysis using the H36 antibody in epifluorescence microscopy as well as by transmission electron microscopy. Consequently, this study shows that MLBs are produced by various dictyostelid species, which further supports a role for MLBs in the lifestyle of amoebae.


Asunto(s)
Dictyostelium/fisiología , Ambiente , Estructuras Celulares/metabolismo , Estructuras Celulares/ultraestructura , Dictyostelium/crecimiento & desarrollo , Dictyostelium/ultraestructura , Fenotipo
13.
J Bacteriol ; 201(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31262835

RESUMEN

In open environments such as water, enterohemorrhagic Escherichia coli O157:H7 responds to inorganic phosphate (Pi) starvation by inducing the Pho regulon controlled by PhoB. This activates the phosphate-specific transport (Pst) system that contains a high-affinity Pi transporter. In the Δpst mutant, PhoB is constitutively activated and regulates the expression of genes in the Pho regulon. Here, we show that Pi starvation and deletion of the pst system enhance E. coli O157:H7 biofilm formation. Among differentially expressed genes of EDL933 grown under Pi starvation conditions and in the Δpst mutant, we have found that a member of the PhoB regulon, waaH, predicted to encode a glycosyltransferase, was highly expressed. Interestingly, WaaH contributed to biofilm formation of E. coli O157:H7 during both Pi starvation and in the Δpst mutant. In the Δpst mutant, the presence of waaH was associated with lipopolysaccharide (LPS) R3 core type modifications, whereas in E. coli O157:H7, waaH overexpression had no effect on LPS structure during Pi starvation. Therefore, waaH participates in E. coli O157:H7 biofilm formation during Pi starvation, but its biochemical role remains to be clarified. This study highlights the importance of the Pi starvation stress response to biofilm formation, which may contribute to the persistence of E. coli O157:H7 in the environment.IMPORTANCE Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen that causes bloody diarrhea that can result in renal failure. Outside of mammalian hosts, E. coli O157:H7 survives for extended periods of time in nutrient-poor environments, likely as part of biofilms. In E. coli K-12, the levels of free extracellular Pi affect biofilm formation; however, it was unknown whether Pi influences biofilm formation by E. coli O157:H7. Our results show that upon Pi starvation, PhoB activates waaH expression, which favors biofilm formation by E. coli O157:H7. These findings suggest that WaaH is a target for controlling biofilm formation. Altogether, our work demonstrates how adaptation to Pi starvation allows E. coli O157:H7 to occupy different ecological niches.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Hexosiltransferasas/metabolismo , Fosfatos/farmacología , Factores de Transcripción/metabolismo , Adhesión Bacteriana , Escherichia coli O157 , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Hexosiltransferasas/genética , Mutación , Factores de Transcripción/genética , Regulación hacia Arriba
14.
Genome ; 61(5): 359-365, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29546998

RESUMEN

The Gram-negative bacterium Pseudomonas aeruginosa is found in several habitats, both natural and human-made, and is particularly known for its recurrent presence as a pathogen in the lungs of patients suffering from cystic fibrosis, a genetic disease. Given its clinical importance, several major studies have investigated the genomic adaptation of P. aeruginosa in lungs and its transition as acute infections become chronic. However, our knowledge about the diversity and adaptation of the P. aeruginosa genome to non-clinical environments is still fragmentary, in part due to the lack of accurate reference genomes of strains from the numerous environments colonized by the bacterium. Here, we used PacBio long-read technology to sequence the genome of PPF-1, a strain of P. aeruginosa isolated from a dental unit waterline. Generating this closed genome was an opportunity to investigate genomic features that are difficult to accurately study in a draft genome (contigs state). It was possible to shed light on putative genomic islands, some shared with other reference genomes, new prophages, and the complete content of insertion sequences. In addition, four different group II introns were also found, including two characterized here and not listed in the specialized group II intron database.


Asunto(s)
Elementos Transponibles de ADN , Variación Genética , Genoma Bacteriano , Pseudomonas aeruginosa/genética , Microbiología del Agua , Mapeo Cromosómico , Consultorios Odontológicos , Islas Genómicas , Humanos , Filogenia , Profagos/clasificación , Profagos/genética , Profagos/aislamiento & purificación , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/virología , Análisis de Secuencia de ADN , Abastecimiento de Agua
15.
BMC Genomics ; 18(1): 528, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701230

RESUMEN

BACKGROUND: Aeromonas salmonicida subsp. salmonicida is a ubiquitous psychrophilic waterborne bacterium and a fish pathogen. The numerous mobile elements, especially insertion sequences (IS), in its genome promote rearrangements that impact its phenotype. One of the main virulence factors of this bacterium, its type three secretion system (TTSS), is affected by these rearrangements. In Aeromonas salmonicida subsp. salmonicida most of the TTSS genes are encoded in a single locus on a large plasmid called pAsa5, and may be lost when the bacterium is cultivated at a higher temperature (25 °C), producing non-virulent mutants. In a previous study, pAsa5-rearranged strains that lacked the TTSS locus on pAsa5 were produced using parental strains, including 01-B526. Some of the generated deletions were explained by homologous recombination between ISs found on pAsa5, whereas the others remained unresolved. To investigate those rearrangements, short- and long-read high-throughput sequencing technologies were used on the A. salmonicida subsp. salmonicida 01-B526 whole genome. RESULTS: Whole genome sequencing of the 01-B526 strain revealed that its pAsa5 has an additional IS copy, an ISAS5, compared to the reference strain (A449) sequence, which allowed for a previously unknown rearrangement to occur. It also appeared that 01-B526 bears a second large plasmid, named pAsa9, which shares 40 kbp of highly similar sequences with pAsa5. Following these discoveries, previously unexplained deletions were elucidated by genotyping. Furthermore, in one of the derived strains a fusion of pAsa5 and pAsa9, involving the newly discovered ISAS5 copy, was observed. CONCLUSION: The loss of TTSS and hence virulence is explained by one consistent mechanism: IS-driven homologous recombination. The similarities between pAsa9 and pAsa5 also provide another example of genetic diversity driven by ISs.


Asunto(s)
Aeromonas salmonicida/genética , Plásmidos/genética , Sistemas de Secreción Tipo III/genética , Técnicas de Genotipaje , Especificidad de la Especie
16.
Langmuir ; 33(8): 2041-2049, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28147485

RESUMEN

The anchoring biofilm layer is expected to exhibit a different response to environmental stresses than for portions in the bulk, due to the protection from other strata and the proximity to the attachment surface. The effect of hydrodynamic stress on surface-adhered biofilm layers was tested using a specially designed microfluidic bio flow cell with an embedded three-electrode detection system. In situ electrochemical impedance spectroscopy (EIS) measurements of biocapacitance and bioresistance of Pseudomonas sp. biofilms were conducted during the growth phase and under different shear flow conditions with verification by other surface sensitive techniques. Distinct, but reversible changes to the amount of biofilm and its structure at the attachment surface were observed during the application of elevated shear stress. In contrast, regular microscopy revealed permanent distortion to the biofilm bulk, in the form of streamers and ripples. Following the application of extreme shear stresses, complete removal of significant portions of biofilm outer layers occurred, but this did not change the measured quantity of biofilm at the electrode attachment surface. The structure of the remaining biofilm, however, appeared to be modified and susceptible to further changes following application of shear stress directly to the unprotected biofilm layers at the attachment surface.


Asunto(s)
Biopelículas , Microfluídica/métodos , Hidrodinámica , Pseudomonas/fisiología
17.
BMC Genomics ; 17: 44, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26753691

RESUMEN

BACKGROUND: Aeromonads make up a group of Gram-negative bacteria that includes human and fish pathogens. The Aeromonas salmonicida species has the peculiarity of including five known subspecies. However, few studies of the genomes of A. salmonicida subspecies have been reported to date. RESULTS: We sequenced the genomes of additional A. salmonicida isolates, including three from India, using next-generation sequencing in order to gain a better understanding of the genomic and phylogenetic links between A. salmonicida subspecies. Their relative phylogenetic positions were confirmed by a core genome phylogeny based on 1645 gene sequences. The Indian isolates, which formed a sub-group together with A. salmonicida subsp. pectinolytica, were able to grow at either at 18 °C and 37 °C, unlike the A. salmonicida psychrophilic isolates that did not grow at 37 °C. Amino acid frequencies, GC content, tRNA composition, loss and gain of genes during evolution, pseudogenes as well as genes under positive selection and the mobilome were studied to explain this intraspecies dichotomy. CONCLUSION: Insertion sequences appeared to be an important driving force that locked the psychrophilic strains into their particular lifestyle in order to conserve their genomic integrity. This observation, based on comparative genomics, is in agreement with previous results showing that insertion sequence mobility induced by heat in A. salmonicida subspecies causes genomic plasticity, resulting in a deleterious effect on the virulence of the bacterium. We provide a proof-of-concept that selfish DNAs play a major role in the evolution of bacterial species by modeling genomes.


Asunto(s)
Aeromonas salmonicida/genética , Variación Genética , Genoma , Filogenia , Aeromonas salmonicida/patogenicidad , Animales , Composición de Base/genética , Elementos Transponibles de ADN/genética , Enfermedades de los Peces/genética , Enfermedades de los Peces/parasitología , Peces/parasitología , Humanos
18.
J Cell Sci ; 127(Pt 21): 4702-13, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25189617

RESUMEN

Dictyostelium discoideum ACAP-A is an Arf GTPase-activating protein (GAP) involved in cytokinesis, cell migration and actin cytoskeleton dynamics. In mammalian cells, ACAP family members regulate endocytic protein trafficking. Here, we explored the function of ACAP-A in the endocytic pathway of D. discoideum. In the absence of ACAP-A, the efficiency of fusion between post-lysosomes and the plasma membrane was reduced, resulting in the accumulation of post-lysosomes. Moreover, internalized fluid-phase markers showed extended intracellular transit times, and the transfer kinetics of phagocyted particles from lysosomes to post-lysosomes was reduced. Neutralization of lysosomal pH, one essential step in lysosome maturation, was also delayed. Whereas expression of ACAP-A-GFP in acapA(-) cells restored normal particle transport kinetics, a mutant ACAP-A protein with no GAP activity towards the small GTPase ArfA failed to complement this defect. Taken together, these data support a role for ACAP-A in maturation of lysosomes into post-lysosomes through an ArfA-dependent mechanism. In addition, we reveal that ACAP-A is required for efficient intracellular growth of Legionella pneumophila, a pathogen known to subvert the endocytic host cell machinery for replication. This further emphasizes the role of ACAP-A in the endocytic pathway.


Asunto(s)
Dictyostelium/metabolismo , Dictyostelium/microbiología , Legionella pneumophila/fisiología , Lisosomas/metabolismo , Interacciones Huésped-Patógeno
19.
Microbiology (Reading) ; 162(6): 942-953, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27028891

RESUMEN

Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids.


Asunto(s)
Aeromonas salmonicida/genética , Proteínas Bacterianas/genética , Cloranfenicol O-Acetiltransferasa/genética , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Aeromonas salmonicida/efectos de los fármacos , Aeromonas salmonicida/aislamiento & purificación , Animales , Secuencia de Bases , Cloranfenicol/farmacología , Peces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Filogenia , Replicón/genética , Análisis de Secuencia de ADN
20.
Appl Environ Microbiol ; 82(9): 2783-90, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26921427

RESUMEN

Campylobacter jejuniis the leading cause of bacterial gastroenteritis worldwide. Transmission to humans occurs through consumption of contaminated food or water. The conditions affecting the persistence of C. jejuniin the environment are poorly understood. Some protozoa package and excrete bacteria into multilamellar bodies (MLBs). Packaged bacteria are protected from deleterious conditions, which increases their survival. We hypothesized that C. jejuni could be packaged under aerobic conditions by the amoeba Acanthamoeba castellanii or the ciliate Tetrahymena pyriformis, both of which are able to package other pathogenic bacteria.A. castellanii did not produce MLBs containing C. jejuni In contrast, when incubated with T. pyriformis,C. jejuni was ingested, packaged in MLBs, and then expelled into the milieu. The viability of the bacteria inside MLBs was confirmed by microscopic analyses. The kinetics of C. jejuni culturability showed that packaging increased the survival of C. jejuniup to 60 h, in contrast to the strong survival defect seen in ciliate-free culture. This study suggests that T. pyriformis may increase the risk of persistence of C. jejuniin the environment and its possible transmission between different reservoirs in food and potable water through packaging.


Asunto(s)
Infecciones por Campylobacter/transmisión , Campylobacter jejuni/fisiología , Tetrahymena pyriformis/microbiología , Acanthamoeba castellanii/crecimiento & desarrollo , Acanthamoeba castellanii/microbiología , Acanthamoeba castellanii/ultraestructura , Aerobiosis , Animales , Campylobacter jejuni/ultraestructura , Vectores de Enfermedades , Microbiología de Alimentos , Interacciones Microbianas , Viabilidad Microbiana , Microscopía Electrónica de Transmisión , Tetrahymena pyriformis/ultraestructura , Microbiología del Agua , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA