Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
J Med Genet ; 60(2): 183-192, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35393335

RESUMEN

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Asunto(s)
Epilepsia , Microcefalia , Receptores de N-Metil-D-Aspartato , Humanos , Heterocigoto , Homocigoto , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética
2.
Am J Hum Genet ; 106(4): 438-452, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32197073

RESUMEN

The neuro-oncological ventral antigen 2 (NOVA2) protein is a major factor regulating neuron-specific alternative splicing (AS), previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in NOVA2 affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait, and abnormal brain MRI. The six variants lead to the same reading frame, adding a common proline rich C-terminal part instead of the last KH RNA binding domain. We detected 41 genes differentially spliced after NOVA2 downregulation in human neural cells. The NOVA2 variant protein shows decreased ability to bind target RNA sequences and to regulate target AS events. It also fails to complement the effect on neurite outgrowth induced by NOVA2 downregulation in vitro and to rescue alterations of retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss-of-function, although a specific contribution of the novel C-terminal extension cannot be excluded.


Asunto(s)
Mutación del Sistema de Lectura/genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Neuronas/fisiología , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Animales , Orientación del Axón/genética , Secuencia de Bases/genética , Células Cultivadas , Preescolar , Regulación hacia Abajo/genética , Femenino , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Ratones , Hipotonía Muscular/genética , Antígeno Ventral Neuro-Oncológico , Pez Cebra/genética
3.
Hum Mol Genet ; 29(5): 766-784, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31919497

RESUMEN

By using the Cre-mediated genetic switch technology, we were able to successfully generate a conditional knock-in mouse, bearing the KIF2A p.His321Asp missense point variant, identified in a subject with malformations of cortical development. These mice present with neuroanatomical anomalies and microcephaly associated with behavioral deficiencies and susceptibility to epilepsy, correlating with the described human phenotype. Using the flexibility of this model, we investigated RosaCre-, NestinCre- and NexCre-driven expression of the mutation to dissect the pathophysiological mechanisms underlying neurodevelopmental cortical abnormalities. We show that the expression of the p.His321Asp pathogenic variant increases apoptosis and causes abnormal multipolar to bipolar transition in newborn neurons, providing therefore insights to better understand cortical organization and brain growth defects that characterize KIF2A-related human disorders. We further demonstrate that the observed cellular phenotypes are likely to be linked to deficiency in the microtubule depolymerizing function of KIF2A.


Asunto(s)
Conducta Animal , Cinesinas/fisiología , Malformaciones del Desarrollo Cortical/patología , Mutación , Neuronas/patología , Proteínas Represoras/fisiología , Animales , Masculino , Malformaciones del Desarrollo Cortical/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo
4.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31422817

RESUMEN

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Asunto(s)
ARN Helicasas DEAD-box/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas Proto-Oncogénicas/genética , ARN/genética , Humanos
5.
Mov Disord ; 37(7): 1547-1554, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35722775

RESUMEN

BACKGROUND: Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE: The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS: We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS: Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION: We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Trastornos del Movimiento , Trastornos Parkinsonianos , Distonía/genética , Trastornos Distónicos/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Humanos , Trastornos del Movimiento/genética , Trastornos Parkinsonianos/genética , Fenotipo
6.
Am J Hum Genet ; 102(1): 116-132, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290337

RESUMEN

Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.


Asunto(s)
Artrogriposis/genética , Encéfalo/embriología , Mutación/genética , Proteínas/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Linaje , Pez Cebra , Proteínas de Pez Cebra/genética
7.
Ann Neurol ; 88(5): 1028-1033, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32743835

RESUMEN

PPP2R5D-related neurodevelopmental disorder is characterized by a range of neurodevelopmental and behavioral manifestations. We report the association of early-onset parkinsonism with the PPP2R5D p.E200K mutation. Clinical characterization and exome sequencing were performed on three patients, with postmortem neuropathologic examination for one patient. All patients had mild developmental delay and developed levodopa-responsive parkinsonism between the ages of 25 and 40 years. The PPP2R5D c.598G>A (p.E200K) mutation was identified in all patients. Neuropathologic examination demonstrated uneven, focally severe neuronal loss and gliosis in the substantia nigra pars compacta, without Lewy bodies. Our findings suggest the PPP2R5D p.E200K mutation to be a possible new cause of early-onset parkinsonism. ANN NEUROL 2020;88:1028-1033.


Asunto(s)
Trastornos Parkinsonianos/genética , Proteína Fosfatasa 2/genética , Adulto , Edad de Inicio , Autopsia , Encéfalo/patología , ADN/genética , Exoma , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Trastornos Parkinsonianos/patología , Linaje
8.
PLoS Genet ; 14(5): e1007281, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29738522

RESUMEN

Periventricular nodular heterotopia (PVNH) is a malformation of cortical development commonly associated with epilepsy. We exome sequenced 202 individuals with sporadic PVNH to identify novel genetic risk loci. We first performed a trio-based analysis and identified 219 de novo variants. Although no novel genes were implicated in this initial analysis, PVNH cases were found overall to have a significant excess of nonsynonymous de novo variants in intolerant genes (p = 3.27x10-7), suggesting a role for rare new alleles in genes yet to be associated with the condition. Using a gene-level collapsing analysis comparing cases and controls, we identified a genome-wide significant signal driven by four ultra-rare loss-of-function heterozygous variants in MAP1B, including one de novo variant. In at least one instance, the MAP1B variant was inherited from a parent with previously undiagnosed PVNH. The PVNH was frontally predominant and associated with perisylvian polymicrogyria. These results implicate MAP1B in PVNH. More broadly, our findings suggest that detrimental mutations likely arising in immediately preceding generations with incomplete penetrance may also be responsible for some apparently sporadic diseases.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Mutación con Pérdida de Función , Proteínas Asociadas a Microtúbulos/genética , Heterotopia Nodular Periventricular/genética , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Femenino , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Secuenciación del Exoma/métodos
9.
Hum Mutat ; 41(1): 69-80, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513310

RESUMEN

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Canales de Potasio Shab/genética , Alelos , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Fenotipo , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Relación Estructura-Actividad
10.
Hum Mol Genet ; 27(2): 224-238, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29077851

RESUMEN

Genetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation. Interestingly, further dissection of this latter process revealed that ciliogenesis regulation is also altered during progenitors cell cycle. Altogether, our data suggest that deregulation of the coupling between ciliogenesis and cell cycle might contribute to the pathogenesis of KIF2A-related brain malformations. They also raise the issue whether ciliogenesis defects are a hallmark of other brain malformations, such as those related to tubulins and MT-motor proteins variants.


Asunto(s)
Cilios/genética , Cinesinas/metabolismo , Malformaciones del Desarrollo Cortical/genética , Proteínas Represoras/metabolismo , Animales , Encéfalo/metabolismo , Ciclo Celular/genética , Cilios/fisiología , Células HeLa , Humanos , Cinesinas/genética , Malformaciones del Desarrollo Cortical/metabolismo , Ratones , Microcefalia/metabolismo , Microtúbulos/metabolismo , Neurogénesis , Proteínas Represoras/genética , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
11.
Hum Mol Genet ; 27(12): 2138-2153, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29659809

RESUMEN

The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.


Asunto(s)
Epilepsia/genética , Proteínas de Homeodominio/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Contractura , Modelos Animales de Enfermedad , Epilepsia/fisiopatología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Lactante , Discapacidad Intelectual , Masculino , Ratones , Mutación , Trastornos del Neurodesarrollo/fisiopatología , Péptidos/genética , Prosencéfalo/fisiopatología , Paraplejía Espástica Hereditaria , Transcriptoma/genética , Adulto Joven
12.
Hum Mol Genet ; 27(4): 589-600, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29267967

RESUMEN

FRMPD4 (FERM and PDZ Domain Containing 4) is a neural scaffolding protein that interacts with PSD-95 to positively regulate dendritic spine morphogenesis, and with mGluR1/5 and Homer to regulate mGluR1/5 signaling. We report the genetic and functional characterization of 4 FRMPD4 deleterious mutations that cause a new X-linked intellectual disability (ID) syndrome. These mutations were found to be associated with ID in ten affected male patients from four unrelated families, following an apparent X-linked mode of inheritance. Mutations include deletion of an entire coding exon, a nonsense mutation, a frame-shift mutation resulting in premature termination of translation, and a missense mutation involving a highly conserved amino acid residue neighboring FRMPD4-FERM domain. Clinical features of these patients consisted of moderate to severe ID, language delay and seizures alongside with behavioral and/or psychiatric disturbances. In-depth functional studies showed that a frame-shift mutation, FRMPD4p.Cys618ValfsX8, results in a disruption of FRMPD4 binding with PSD-95 and HOMER1, and a failure to increase spine density in transfected hippocampal neurons. Behavioral studies of frmpd4-KO mice identified hippocampus-dependent spatial learning and memory deficits in Morris Water Maze test. These findings point to an important role of FRMPD4 in normal cognitive development and function in humans and mice, and support the hypothesis that FRMPD4 mutations cause ID by disrupting dendritic spine morphogenesis in glutamatergic neurons.


Asunto(s)
Espinas Dendríticas/metabolismo , Discapacidad Intelectual/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Adolescente , Adulto , Anciano , Exones/genética , Femenino , Mutación del Sistema de Lectura/genética , Humanos , Masculino , Persona de Mediana Edad , Morfogénesis/genética , Morfogénesis/fisiología , Mutación/genética , Neurogénesis/genética , Neurogénesis/fisiología , Linaje , Adulto Joven
13.
Am J Hum Genet ; 101(3): 428-440, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28823707

RESUMEN

Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare recessive disorders with prenatal onset, characterized by hypoplasia of pons and cerebellum. Mutations in a small number of genes have been reported to cause PCH, and the vast majority of PCH cases are explained by mutations in TSEN54, which encodes a subunit of the tRNA splicing endonuclease complex. Here we report three families with homozygous truncating mutations in TBC1D23 who display moderate to severe intellectual disability and microcephaly. MRI data from available affected subjects revealed PCH, small normally proportioned cerebellum, and corpus callosum anomalies. Furthermore, through in utero electroporation, we show that downregulation of TBC1D23 affects cortical neuron positioning. TBC1D23 is a member of the Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs). Members of this protein family negatively regulate RAB proteins and modulate the signaling between RABs and other small GTPases, some of which have a crucial role in the trafficking of intracellular vesicles and are involved in neurological disorders. Here, we demonstrate that dense core vesicles and lysosomal trafficking dynamics are affected in fibroblasts harboring TBC1D23 mutation. We propose that mutations in TBC1D23 are responsible for a form of PCH with small, normally proportioned cerebellum and should be screened in individuals with syndromic pontocereballar hypoplasia.


Asunto(s)
Enfermedades Cerebelosas/genética , Cerebelo/anomalías , Proteínas Activadoras de GTPasa/genética , Homocigoto , Microcefalia/genética , Mutación , Malformaciones del Sistema Nervioso/genética , Neuronas/patología , Adolescente , Animales , Células Cultivadas , Enfermedades Cerebelosas/patología , Cerebelo/patología , Niño , Preescolar , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Ratones , Microcefalia/patología , Malformaciones del Sistema Nervioso/patología , Neuroblastoma/genética , Neuroblastoma/patología , Proyección Neuronal , Neuronas/metabolismo , Linaje
14.
Mov Disord ; 35(5): 880-885, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31922365

RESUMEN

BACKGROUND: The group of dystonia genes is expanding, and mutations of these genes have been associated with various combined dystonia syndromes. Among the latter, the cause of some dystonia parkinsonism cases remains unknown. OBJECTIVE: To report patients with early-onset dystonia parkinsonism as a result of loss-of-function mutations in nuclear receptor subfamily 4 group A member 2. METHODS: Phenotypic characterization and exome sequencing were carried out in 2 families. RESULTS: The 2 patients reported here both had a history of mild intellectual disability in childhood and subsequently developed dystonia parkinsonism in early adulthood. Brain magnetic resonance imaging was normal, and DATscan suggested bilateral dopaminergic denervation. Two frameshift mutations in NR4A2 were identified: a de novo insertion (NM_006186.3; c.326dupA) in the first case and another small insertion (NM_006186.3; c.881dupA) in the second. CONCLUSIONS: NR4A2 haploinsufficiency mutations have been recently reported in neurodevelopmental phenotypes. Our findings indicate that dystonia and/or parkinsonism may appear years after initial symptoms. Mutations in NR4A2 should be considered in patients with unexplained dystonia parkinsonism. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Trastornos Parkinsonianos , Adulto , Niño , Trastornos Distónicos/genética , Humanos , Mutación/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/genética
15.
Am J Med Genet A ; 182(5): 1236-1242, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32052936

RESUMEN

Cerebro-oculo-facio-skeletal syndrome (COFS) is a rare autosomal recessive neurodegenerative disease belonging to the family of DNA repair disorders, characterized by microcephaly, congenital cataracts, facial dysmorphism and arthrogryposis. Here, we describe the detailed morphological and microscopic phenotype of three fetuses from two families harboring ERCC5/XPG likely pathogenic variants, and review the five previously reported fetal cases. In addition to the classical features of COFS, the fetuses display thymus hyperplasia, splenomegaly and increased hematopoiesis. Microencephaly is present in the three fetuses with delayed development of the gyri, but normal microscopic anatomy at the supratentorial level. Microscopic anomalies reminiscent of pontocerebellar hypoplasia are present at the infratentorial level. In conclusion, COFS syndrome should be considered in fetuses when intrauterine growth retardation is associated with microcephaly, arthrogryposis and ocular anomalies. Further studies are needed to better understand XPG functions during human development.


Asunto(s)
Síndrome de Cockayne/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Enfermedades Neurodegenerativas/genética , Proteínas Nucleares/genética , Diagnóstico Prenatal , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Catarata/diagnóstico , Catarata/patología , Síndrome de Cockayne/diagnóstico , Síndrome de Cockayne/epidemiología , Síndrome de Cockayne/patología , Femenino , Feto/patología , Humanos , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patología , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/patología , Embarazo
16.
Epilepsia ; 61(11): 2461-2473, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32954514

RESUMEN

OBJECTIVE: We aimed to delineate the phenotypic spectrum and long-term outcome of individuals with KCNB1 encephalopathy. METHODS: We collected genetic, clinical, electroencephalographic, and imaging data of individuals with KCNB1 pathogenic variants recruited through an international collaboration, with the support of the family association "KCNB1 France." Patients were classified as having developmental and epileptic encephalopathy (DEE) or developmental encephalopathy (DE). In addition, we reviewed published cases and provided the long-term outcome in patients older than 12 years from our series and from literature. RESULTS: Our series included 36 patients (21 males, median age = 10 years, range = 1.6 months-34 years). Twenty patients (56%) had DEE with infantile onset seizures (seizure onset = 10 months, range = 10 days-3.5 years), whereas 16 (33%) had DE with late onset epilepsy in 10 (seizure onset = 5 years, range = 18 months-25 years) and without epilepsy in six. Cognitive impairment was more severe in individuals with DEE compared to those with DE. Analysis of 73 individuals with KCNB1 pathogenic variants (36 from our series and 37 published individuals in nine reports) showed developmental delay in all with severe to profound intellectual disability in 67% (n = 41/61) and autistic features in 56% (n = 32/57). Long-term outcome in 22 individuals older than 12 years (14 in our series and eight published individuals) showed poor cognitive, psychiatric, and behavioral outcome. Epilepsy course was variable. Missense variants were associated with more frequent and more severe epilepsy compared to truncating variants. SIGNIFICANCE: Our study describes the phenotypic spectrum of KCNB1 encephalopathy, which varies from severe DEE to DE with or without epilepsy. Although cognitive impairment is worse in patients with DEE, long-term outcome is poor for most and missense variants are associated with more severe epilepsy outcome. Further understanding of disease mechanisms should facilitate the development of targeted therapies, much needed to improve the neurodevelopmental prognosis.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encefalopatías/genética , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Canales de Potasio Shab/genética , Adolescente , Adulto , Encefalopatías/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Electroencefalografía/tendencias , Epilepsia/fisiopatología , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
17.
Epilepsy Behav ; 105: 106944, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32097883

RESUMEN

OBJECTIVE: Autosomal dominant sleep-related hypermotor epilepsy (ADSHE) is characterized by hypermotor seizures and may be caused by gain-of-function mutations affecting the nicotinic acetylcholine receptor (nAChR). Benefit from nicotine consumption has been reported in adult patients with this disorder. For the first time, the effect of transdermal nicotine is evaluated in children. METHODS: Transdermal nicotine was applied to three boys, two aged 10 years (7 mg/24 h) and one six years (3.5 mg/24 h). Autosomal dominant sleep-related hypermotor epilepsy was caused by the p.S280F-CHRNA4 (cholinergic receptor, nicotinic, alpha polypeptide 4) mutation. The children suffered from frequent, persistent nocturnal seizures and had developed educational and psychosocial problems. Seizure frequency and cognitive and behavioral parameters were assessed before and after treatment. RESULTS: A striking seizure reduction was reported soon after treatment onset. Hypermotor seizures disappeared; only sporadic arousals, sometimes with minor motor elements, were observed. Psychometric testing documented improvement in cognitive domains such as visuospatial ability, processing speed, memory, and some areas of executive functions. SIGNIFICANCE: Nicotine appears to be a mechanistic treatment for this specific disorder, probably because of desensitization of the mutated receptors. It may control seizures resistant to conventional drugs for epilepsy and impact socioeducational function in children. This mode of precision therapy should receive more attention and should be available to more patients with uncontrolled CHRNA4-related ADSHE across the age span.


Asunto(s)
Epilepsia Refleja/tratamiento farmacológico , Epilepsia Refleja/genética , Nicotina/administración & dosificación , Receptores Nicotínicos/genética , Sueño/genética , Dispositivos para Dejar de Fumar Tabaco , Adolescente , Niño , Epilepsia Refleja/diagnóstico , Humanos , Masculino , Mutación/genética , Sueño/efectos de los fármacos , Resultado del Tratamiento
18.
Proc Natl Acad Sci U S A ; 114(44): E9308-E9317, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078390

RESUMEN

The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.


Asunto(s)
Autofagia/fisiología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Repeticiones WD40/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Microtúbulos/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Fenotipo , Células Madre/metabolismo , Células Madre/fisiología
19.
Hum Mutat ; 40(11): 2021-2032, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31184401

RESUMEN

The X-linked NLGN3 gene, encoding a postsynaptic cell adhesion molecule, was involved in a nonsyndromic monogenic form of autism spectrum disorder (ASD) by the description of one unique missense variant, p.Arg451Cys (Jamain et al. 2003). We investigated here the pathogenicity of additional missense variants identified in two multiplex families with intellectual disability (ID) and ASD: c.1789C>T, p.Arg597Trp, previously reported by our group (Redin et al. 2014) and present in three affected cousins and c.1540C>T, p.Pro514Ser, identified in two affected brothers. Overexpression experiments in HEK293 and HeLa cell lines revealed that both variants affect the level of the mature NLGN3 protein, its localization at the plasma membrane and its presence as a cleaved form in the extracellular environment, even more drastically than what was reported for the initial p.Arg451Cys mutation. The variants also induced an unfolded protein response, probably due to the retention of immature NLGN3 proteins in the endoplasmic reticulum. In comparison, the c.1894A>G, p.Ala632Thr and c.1022T>C, p.Val341Ala variants, present in males from the general population, have no effect. Our report of two missense variants affecting the normal localization of NLGN3 in a total of five affected individuals reinforces the involvement of the NLGN3 gene in a neurodevelopmental disorder characterized by ID and ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular Neuronal/genética , Disfunción Cognitiva/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Trastorno del Espectro Autista/diagnóstico , Moléculas de Adhesión Celular Neuronal/metabolismo , Disfunción Cognitiva/diagnóstico , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación Missense , Proteínas del Tejido Nervioso/metabolismo , Linaje , Fenotipo , Conformación Proteica , Transporte de Proteínas , Inactivación del Cromosoma X
20.
Genet Med ; 21(2): 398-408, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30093711

RESUMEN

PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.


Asunto(s)
Epilepsia/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Síndrome de Brugada/genética , Síndrome de Brugada/mortalidad , Síndrome de Brugada/fisiopatología , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Epilepsia/complicaciones , Epilepsia/epidemiología , Epilepsia/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mutación INDEL/genética , Lactante , Recién Nacido , Mutación con Pérdida de Función/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Complejos Multiproteicos/genética , Linaje , Convulsiones/complicaciones , Convulsiones/epidemiología , Convulsiones/genética , Convulsiones/fisiopatología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA