Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Biol Chem ; 300(5): 107297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641065

RESUMEN

A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERß can affect the VM formation in RCC, it is unclear which factor could upregulate ERß. This is the first study to show LncRNA-SERB can be the upstream regulator of ERß to control RCC progression. Mechanistically, LncRNA-SERB may increase ERß via binding to the promoter area, and ERß functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERß/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.


Asunto(s)
Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Neovascularización Patológica , ARN Largo no Codificante , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/genética , Animales , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Línea Celular Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Metástasis de la Neoplasia , Ratones Desnudos , Masculino , Femenino , Invasividad Neoplásica
2.
BMC Bioinformatics ; 24(1): 91, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899339

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC), one of the top 10 causes of cancer death, is responsible for more than 90% of all cases of primary renal cancer worldwide. Follicular dendritic cell-secreted protein (FDC-SP) specifically binds to activated B cells and regulates the generation of antibodies. It is also thought to promote cancer cell invasion and migration, which could help with tumor metastases. This study aimed to assess the efficacy of FDC-SP in the diagnosis and prognosis of RCC and to investigate the relationship between immune infiltration in RCC and these outcomes. RESULTS: RCC tissues had significantly higher levels of FDC-SP protein and mRNA than normal tissues. The high level of FDC-SP expression was linked to the T stage, histological grade, pathological stage, N stage, M stage, and OS event. Functional enrichment analysis identified the major pathways that were enriched as immune response regulation, complement, and coagulation. Immunological checkpoints and immune cell infiltration were observed to substantially correlate with the levels of FDC-SP expression. FDC-SP expression levels showed the ability to precisely distinguish high-grade or high-stage renal cancer (area under the curve (AUC) = 0.830, 0.722), and RCC patients with higher FDC-SP expression levels had worse prognoses. The AUC values for one-, two-, and five-year survival rates were all greater than 0.600. Moreover, the FDC-SP expression is an independent predictive biomarker of OS in RCC patients. CONCLUSION: FDC-SP may be a prospective therapeutic target in RCC as well as a possible diagnostic and prognostic biomarker associated with immune infiltration.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Células Dendríticas Foliculares/metabolismo , Células Dendríticas Foliculares/patología , Pronóstico , Proteínas/metabolismo , Neoplasias Renales/patología
3.
Acta Pharmacol Sin ; 43(11): 2749-2758, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35484402

RESUMEN

Immunotherapy, in particular immune checkpoint blockade (ICB) therapy targeting the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis, has remarkably revolutionized cancer treatment in the clinic. Anti-PD-1/PD-L1 therapy is designed to restore the antitumor response of cytotoxic T cells (CTLs) by blocking the interaction between PD-L1 on tumour cells and PD-1 on CTLs. Nevertheless, current anti-PD-1/PD-L1 therapy suffers from poor therapeutic outcomes in a large variety of solid tumours due to insufficient tumour specificity, severe cytotoxic effects, and the occurrence of immune resistance. In recent years, nanosized drug delivery systems (NDDSs), endowed with highly efficient tumour targeting and versatility for combination therapy, have paved a new avenue for cancer immunotherapy. In this review article, we summarized the recent advances in NDDSs for anti-PD-1/PD-L1 therapy. We then discussed the challenges and further provided perspectives to promote the clinical application of NDDS-based anti-PD-1/PD-L1 therapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1 , Nanomedicina , Inmunoterapia , Neoplasias/terapia
4.
Chembiochem ; 22(24): 3369-3380, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411411

RESUMEN

Nanotechnology has been widely applied to the fabrication of drug delivery systems in the past decades. Recently, with the progress made in microfabrication approaches, nanorobots are steadily becoming a promising means for tumor-targeting drug delivery. In general, nanorobots can be divided into two categories: nanomotors and stimuli-responsive nanorobots. Nanomotors are nanoscale systems with the ability to convert surrounding energies into mechanical motion, whereas stimuli-responsive nanorobots are featured with activatable capacity in response to various endogenous and exogenous stimulations. In this minireview, the dynamic control of nanomotors and the rational design of stimuli-responsive nanorobots are overviewed, with particular emphasis on their contribution to tumor-targeting therapy. Moreover, challenges and perspectives associated with the future development of nanorobots are presented.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Humanos , Nanotecnología , Neoplasias/patología
5.
Cell Microbiol ; 22(4): e13177, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32185893

RESUMEN

Extracellular bacterial symbionts communicate biochemically with their hosts to establish niches that foster the partnership. Using quantitative ion microprobe isotopic imaging (nanoscale secondary ion mass spectrometry [NanoSIMS]), we surveyed localization of 15 N-labelled molecules produced by the bacterium Vibrio fischeri within the cells of the symbiotic organ of its host, the Hawaiian bobtail squid, and compared that with either labelled non-specific species or amino acids. In all cases, two areas of the organ's epithelia were significantly more 15 N enriched: (a) surface ciliated cells, where environmental symbionts are recruited, and (b) the organ's crypts, where the symbiont population resides in the host. Label enrichment in all cases was strongest inside host cell nuclei, preferentially in the euchromatin regions and the nucleoli. This permissiveness demonstrated that uptake of biomolecules is a general mechanism of the epithelia, but the specific responses to V. fischeri cells recruited to the organ's surface are due to some property exclusive to this species. Similarly, in the organ's deeper crypts, the host responds to common bacterial products that only the specific symbiont can present in that location. The application of NanoSIMS allows the discovery of such distinct modes of downstream signalling dependent on location within the host and provides a unique opportunity to study the microbiogeographical patterns of symbiotic dialogue.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Microscopía Electrónica , Transducción de Señal , Espectrometría de Masa de Ion Secundario , Simbiosis , Aliivibrio fischeri/ultraestructura , Animales , Interacciones Microbiota-Huesped
6.
Am J Otolaryngol ; 42(2): 102896, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33445037

RESUMEN

OBJECTIVES: This study aims to propose a novel and effective throat swab collection method for coronavirus disease 2019 (COVID-19). METHODS: The subjects were randomly divided into two groups. The subjects were asked to open their mouth to make "ah" sound (traditional method) or simulate yawn (improved method) for throat swab collection. The usage of tongue depressor, collection time, adverse reactions and subjective discomfort (VAS score) were compared. The collection time, comprehensive indicators of adverse reactions and VAS score were also compared among three collectors. RESULTS: The tongue depressor was less used in the improved group (χ2 = 40.186, P < 0.01). The average collection time of the traditional group was 5.44 ± 2.97 and that of the improved group was 4.00 ± 2.31 (P < 0.01). The subjects in the improved group had fewer and milder adverse reactions. The VAS score of subjects in the improved group was lower than that in the traditional group (P < 0.01). Among different collectors, the collection time, comprehensive indicators of adverse reactions and VAS were the same as the overall trend. CONCLUSION: Simulating yawn is a safer and faster throat swab collection method.


Asunto(s)
COVID-19/diagnóstico , Faringe/virología , Manejo de Especímenes/métodos , Bostezo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Distribución Aleatoria , Factores de Tiempo , Escala Visual Analógica , Adulto Joven
7.
Pathobiology ; 87(6): 345-355, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33238264

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are potential biomarkers that are very important for the development of cancer. Studies show that lncRNAs are significantly correlated with the carcinogenesis and progression of bladder cancer (BLCA). In this research, we aimed at probing into the role of lncRNA MAFG-AS1 in the tumorigenesis of BLCA. METHODS: RT-qPCR was employed to detect MAFG-AS1 expression in BLCA tissues and cells. MAFG-AS1 siRNA and overexpression plasmid were transfected into 5637 and T24 BLCA cell lines to inhibit or upregulate MAFG-AS1 expression, respectively, and then the regulatory functions of MAFG-AS1 on BLCA cell proliferation, migration, and invasion were assessed using cell counting kit-8 (CCK-8) assay, EdU method, and Transwell experiments, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation were conducted to validate the targeting relationships between MAFG-AS1 and miR-143-3p, and miR-143-3p and COX-2. In addition, miR-143-3p was repressed in MAFG-AS1-silenced 5637 and T24 cell lines, and the function of MAFG-AS1/miR-143-3p axis in BLCA cells was further evaluated. The regulatory effects of MAFG-AS1 and miR-143-3p on the expression of COX-2 protein were detected by Western blot. RESULTS: MAFG-AS1 was remarkably upregulated in BLCA patient tissues and cell lines, and its high expression was closely related to histological grade, tumor size, and lymph node metastasis. Silencing of MAFG-AS1 inhibited BLCA cell proliferation, metastasis, and invasion, while overexpression of MAFG-AS1 in BLCA cells had opposite biological effects. MAFG-AS1 was proved to target miR-143-3p to repress its expression. Moreover, it was confirmed that MAFG-AS1 and miR-143-3p could modulate COX-2 expression. CONCLUSION: The MAFG-AS1/miR-143-3p/COX-2 axis contributes to BLCA progression.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Progresión de la Enfermedad , Factor de Transcripción MafG/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Neoplasias de la Vejiga Urinaria/genética , Adulto , Línea Celular Tumoral , Proliferación Celular/genética , Ciclooxigenasa 2/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/clasificación , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Regulación hacia Arriba
8.
J Environ Sci (China) ; 81: 214-224, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30975324

RESUMEN

In order to reduce the amount of NO3--N generated by the Anammox process, and alleviate the competition between denitrification and Anammox for NO2--N in a single reactor, the preference of S0 for reacting with coexisting NO2--N and NO3--N in the sulfur autotrophic denitrifying (SADN) process and the coupling effect of short-cut SADN and the Anammox process were studied. The results showed that S0 preferentially reacted with NO3- to produce NO2--N, and then reacted with NO2--N when NO3--N was insufficient, which could effectively alleviate the competition between SADN bacteria (SADNB) and Anammox bacteria (AnAOB) for NO2--N. After 170 days of operation, coupling between short-cut S0-SADN and the Anammox process was first successfully achieved. SADNB converted the NO3--N generated by the Anammox process into NO2--N, which was once again available to AnAOB. The total nitrogen removal efficiency eventually stabilized at over 95%, and the effluent NO3--N was controlled within 10 mg/L, when high NH4+-N wastewater was treated by the Anammox process. Microbial community analysis further showed that Candidatus Brocadia and Thiobacillus were the functional microorganisms for AnAOB and SADNB.


Asunto(s)
Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Procesos Autotróficos , Reactores Biológicos , Crecimiento Quimioautotrófico , Desnitrificación/fisiología , Nitratos , Nitrógeno/metabolismo , Thiobacillus , Aguas Residuales , Contaminantes Químicos del Agua/metabolismo
9.
Chin Med Sci J ; 31(1): 49-53, 2016 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28031088

RESUMEN

Objective To analyze the risk factors causing postoperative urosepsis in ureter endoscopic lithotripsy without infection preoperatively, in order to make a more effective and safer preventive and therapeutic strategy.Methods From January 2010 to January 2015, 5 ureteral calculus patients undergoing ureter endoscopic lithotripsy with holmium laser were retrospectively enrolled in this clinical study. These patients suffered urosepsis postoperatively confirmed by the clinical presentations and laboratory Results, while they had no infection in their blood and urine preoperatively. Without delay, 5 patients were treated by anti-inflammation and anti-shock.Results The vasopressor drug was stopped gradually after 12-36 hours. The body temperature was recovered to normal in 2 or 3 days, and the blood and urine test Results were not abnormal in 7 days. At last, 5 patients were all cured.Conclusions Stone and operation themselves are potential factors to cause urosepsis after ureter endoscopic lithotripsy. Especially for patients who had not presented infection preoperatively, careful preparation preoperatively, corrective manipulation, low pressure irrigation, drainage and controlling time during operation, and early diagnosis, appropriate treatment postoperatively are the key to cure and prevent urosepsis.


Asunto(s)
Sepsis , Humanos , Litotricia , Litotripsia por Láser , Factores de Riesgo , Uréter , Cálculos Ureterales
10.
Environ Sci Technol ; 49(22): 13385-93, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26469806

RESUMEN

The investigation on factors that affect the impact of natural organic matter (NOM) on colloid transport in complex hydraulic flow systems remains incomplete. Using our previously established approach, the interplay of flow rate and particle size on the NOM effect was quantified, using flow rates of 1 and 2 mL/min and particle sizes of 50 and 200 nm to represent small nanoparticles (1-100 nm) and large non-nano-microspheres (100-1000 nm) in the low-flow groundwater environment. Latex particles, Suwannee River humic acid (SRHA), and iron oxide-coated sand were used as model particles, NOM, and the aquifer medium, respectively. The quantitative results show NOM blocked more sites for large particles at a high flow rate: 1 µg of SRHA blocked 5.95 × 10(9) microsphere deposition sites at 2 mL/min but only 7.38 × 10(8) nanoparticle deposition sites at 1 mL/min. The particle size effect dominated over the flow rate, and the overall effect of the two is antagonistic. Granule-scale visualization of the particle packing on the NOM-presented sand surface corroborates the quantification results, revealing a more dispersed status of large particles at a high flow rate. We interpret this phenomenon as a polydispersivity effect resulting from the differential size of the particles and NOM: high flow and a high particle size enlarge the ratio of particle-blocked to NOM-blocked areas and thus the NOM blockage. To our knowledge, this is the first model-assisted quantification on the interplay of NOM, flow rate, and particle size on colloid transport. These findings are significant for nanorisk assessment and nanoremediation practices.


Asunto(s)
Coloides , Hidrología/métodos , Modelos Teóricos , Compuestos Férricos/química , Agua Subterránea , Sustancias Húmicas , Nanopartículas , Tamaño de la Partícula , Dióxido de Silicio
11.
Mol Med Rep ; 30(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757308

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion assay data shown in Fig. 2C on p. 4921 were strikingly similar to data that had already been submitted for publication in different form in another article written by different authors at a different research institute. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a  reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 17: 4917­4924, 2018; DOI: 10.3892/mmr.2018.8497].

12.
Exploration (Beijing) ; 4(2): 20210146, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38855617

RESUMEN

mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.

13.
Sci Rep ; 13(1): 16302, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770494

RESUMEN

Renal cell cancer is associated with the coagulation system. Long non-coding RNA (lncRNA) expression is closely associated with the development of clear cell renal cell carcinoma (ccRCC). The aim of this study was to build a novel lncRNA model to predict the prognosis and immunological state of ccRCC. The transcriptomic data and clinical data of ccRCC were retrieved from TCGA database, subsequently, the lasso regression and lambda spectra were used to filter prognostic lncRNAs. ROC curves and the C-index were used to confirm the predictive effectiveness of this model. We also explored the difference in immune infiltration, immune checkpoints, tumor mutation burden (TMB) and drug sensitivity between the high- and low-risk groups. We created an 8 lncRNA model for predicting the outcome of ccRCC. Multivariate Cox regression analysis showed that age, tumor grade, and risk score are independent prognostic factors for ccRCC patients. ROC curve and C-index revealed the model had a good performance in predicting prognosis of ccRCC. GO and KEGG analysis showed that coagulation related genes were related to immune response. In addition, high risk group had greater TMB level and higher immune checkpoints expression. Sorafenib, Imatinib, Pazopanib, and etoposide had higher half maximal inhibitory concentration (IC50) in the high risk group whereas Sunitinib and Bosutinib had lower IC50. This novel coagulation-related long noncoding RNAs model could predict the prognosis of patients with ccRCC, and coagulation-related lncRNA may be connected to the tumor microenvironment and gene mutation of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , ARN Largo no Codificante , Humanos , Carcinoma de Células Renales/genética , ARN Largo no Codificante/genética , Neoplasias Renales/genética , Pronóstico , Microambiente Tumoral
14.
Int J Mol Med ; 52(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615186

RESUMEN

Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that certain of the colony formation assay data shown in Fig. 3A on p. 7 and the immunohistochemistry data in Fig. 5D were strikingly similar to data that had already appeared in previous publications. Owing to the fact that the contentious data in the above article had already been published elsewhere, or were under consideration for publication, prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract this paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 48: 211, 2021; DOI: 10.3892/ijmm.2021.5044].

15.
Small Methods ; 7(5): e2200888, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36446643

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and resistant to conventional therapies, including chemo-, radio-, and immunotherapy. In this study, it is first determined that a combination of dihydroartemisinin (DHA) and RSL-3 (a glutathione peroxidase 4 (GPX4) inhibitor) markedly induced ferroptosis of PDAC tumor cells. A mechanistic study revealed that DHA can react with iron ions to generate carbon radicals and deplete intracellular glutathione, thereby cumulatively triggering the lipid peroxidation of tumor cells with RSL-3-mediated GPX4 inhibition. A DHA-conjugated amphiphilic copolymer is subsequently synthesized, and intracellular acidity and oxidation dual-responsive DHA nanoparticles are further engineered for the tumor-specific co-delivery of DHA and RSL-3. The resultant nanoparticles (PDBA@RSL-3) efficiently induce ferroptosis of tumor cells in the Panc02 tumor-bearing immune-deficient mouse model, and elicit T-cell-based antitumor immunity in the immune-competent mouse model. The combination of PDBA@RSL-3 nanoparticles and programmed death ligand 1 blockade therapy efficiently inhibits PDAC tumor growth in the immune-competent mouse models. This study may provide novel insights for treatment of PDAC with ferroptosis-based immunotherapy.


Asunto(s)
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Ratones , Animales , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Oxidación-Reducción , Neoplasias Pancreáticas
16.
Adv Mater ; 35(10): e2209910, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36576344

RESUMEN

The critical challenge for cancer vaccine-induced T-cell immunity is the sustained activation of antigen cross-presentation in antigen-presenting cells (APCs) with innate immune stimulation. In this study, it is first discovered that the clinically used magnetic contrast agents, iron oxide nanoparticles (IONPs), markedly augment the type-I interferon (IFN-I) production profile of the stimulator of interferon genes (STING) agonist MSA-2 and achieve a 16-fold dosage-sparing effect in the human STING haplotype. Acid-ionizable copolymers are coassembled with IONPs and MSA-2 into iron nanoadjuvants to concentrate STING activation in the draining lymph nodes. The top candidate iron nanoadjuvant (PEIM) efficiently delivers the model antigen ovalbumin (OVA) to CD169+ APCs and facilitates antigen cross-presentation to elicit a 55-fold greater frequency of antigen-specific CD8+ cytotoxic T-lymphocyte response than soluble antigen. PEIM@OVA nanovaccine immunization induces potent and durable antitumor immunity to prevent tumor lung metastasis and eliminate established tumors. Moreover, PEIM nanoadjuvant is applicable to deliver autologous tumor antigen and synergizes with immune checkpoint blockade therapy for prevention of postoperative tumor recurrence and distant metastasis in B16-OVA melanoma and MC38 colorectal tumor models. The acid-ionizable iron nanoadjuvant offers a generalizable and readily translatable strategy to augment STING cascade activation and antigen cross-presentation for personalized cancer vaccination immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Melanoma Experimental , Animales , Humanos , Ratones , Recurrencia Local de Neoplasia , Inmunoterapia , Células Presentadoras de Antígenos , Vacunación , Interferones , Ratones Endogámicos C57BL
17.
Front Physiol ; 13: 1040278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531174

RESUMEN

Background: The application of Kinesio Taping (KT) on the lower extremity of stroke patients can improve the quality of somatosensory information by activating lower extremity muscles involved in postural control. Gait analysis and surface electromyography (SEMG) are valuable in assessing the motor ability of the lower extremities. Objective: This study aimed to investigate the effects of KT therapy on gait and SEMG in stroke patients with hemiplegia. Methods: Twenty-one stroke patients were included in the study. KT was applied to the lower extremities of the hemiplegic side. Quantitative gait parameters were measured by a gait analysis system (IDEEA, by MiniSun, United States) and activation of the lower extremity muscles were evaluated by the SEMG (Trigno™ Wireless Systems, Delsys Inc., United States) before and after taping. Step length, stride length, pulling acceleration, swing power, ground impact, and energy expenditure were used to evaluate when patients walk as usual. SEMG signals were collected from the anterior bilateral tibialis (TA) and the lateral gastrocnemius (LG). The root mean square (RMS) value was used to assess muscle activity. SEMG signals were examined before and after KT treatment in three different locomotor conditions of the patients: walking at a natural speed, walking with a weight of 5 kg, dual-tasking walking (walking + calculation task) while carrying a weight of 5 kg. The calculation task was to ask the patients to calculate the result of subtracting 7 from 100 and continuing to subtract 7 from the resulting numbers. Comparisons between two normally distributed samples (before and after KT treatment) were evaluated using the two-tailed, paired Student's t-test. Results: Stride length (0.89 ± 0.19 vs. 0.96 ± 0.23; p = 0.029), pulling acceleration (0.40 ± 0.21 vs. 1.11 ± 0.74; p = 0.005), and swing power (0.42 ± 0.24 vs. 1.14 ± 0.72; p = 0.004) improved in the hemiplegia side after KT treatment. The RMS value of TA SEMG signals in the limbs on the hemiplegia side decreased after KT treatment during dual-tasking walking carrying a weight of 5 kg (3.65 ± 1.31 vs. 2.93 ± 0.95; p = 0.030). Conclusion: KT treatment is effective in altering gait and SEMG characteristics in stroke patients with hemiplegia.

18.
Adv Sci (Weinh) ; 9(36): e2203263, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344430

RESUMEN

Chemoradiotherapy is the standard of care for the clinical treatment of locally advanced head and neck cancers. However, the combination of ion radiation with free chemotherapeutics yields unsatisfactory therapeutic output and severe side effects due to the nonspecific biodistribution of the anticancer drugs. Herein, a self-cooperative prodrug nanovesicle is reported for highly tumor-specific chemoradiotherapy. The nanovesicles integrating a prodrug of oxaliplatin (OXA) can passively accumulate at the tumor site and penetrate deep into the tumor mass via matrix metalloproteinase 2-mediated cleavage of the polyethylene glycol corona. The OXA prodrug can be restored inside the tumor cells with endogenous glutathione to trigger immunogenic cell death (ICD) of the tumor cells and sensitize the tumor to ion radiation. The nanovesicles can be further loaded with the JAK inhibitor ruxolitinib to abolish chemoradiotherapy-induced programmed death ligand 1 (PD-L1) upregulation on the surface of the tumor cells, thereby prompting chemoradiotherapy-induced immunotherapy by blocking the interferon gamma-Janus kinase-signal transducer and activator of transcription axis. The prodrug nanoplatform reported herein might present a novel strategy to cooperatively enhance chemoradiotherapy of head and cancer and overcome PD-L1-dependent immune evasion.


Asunto(s)
Neoplasias de Cabeza y Cuello , Profármacos , Humanos , Antígeno B7-H1/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Evasión Inmune , Distribución Tisular , Neoplasias de Cabeza y Cuello/terapia , Oxaliplatino , Quimioradioterapia
19.
Front Chem ; 10: 861353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444996

RESUMEN

Glucose is a source of energy for daily activities of the human body and is regarded as a clinical biomarker, due to the abnormal glucose level in the blood leading to many endocrine metabolic diseases. Thus, it is indispensable to develop simple, accurate, and sensitive methods for glucose detection. However, the current methods mainly depend on natural enzymes, which are unstable, hard to prepare, and expensive, limiting the extensive applications in clinics. Herein, we propose a dual-mode Cu2O nanoparticles (NPs) based biosensor for glucose analysis based on colorimetric assay and laser desorption/ionization mass spectrometry (LDI MS). Cu2O NPs exhibited excellent peroxidase-like activity and served as a matrix for LDI MS analysis, achieving visual and accurate quantitative analysis of glucose in serum. Our proposed method possesses promising application values in clinical disease diagnostics and monitoring.

20.
ACS Appl Mater Interfaces ; 14(35): 39787-39798, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36001127

RESUMEN

Stimuli-activatable nanomaterials hold significant promise for tumor-specific drug delivery by recognizing the internal or external stimulus. Herein, we reported a dual-responsive and biodegradable polypeptide nanoparticle (PPTP@PTX2 NP) for combinatory chemotherapy and photodynamic therapy (PDT) of breast cancer. The NPs were engineered by encapsulating diselenide bond linked dimeric prodrug of paclitaxel (PTX2) in an intracellular acidity-activatable polypeptide micelle. Specifically, the acid-responsive polypeptide was synthesized by grafting a tetraphenyl porphyrin (TPP) photosensitizer and N,N-diisopropylethylenediamine (DPA) onto the poly(ethylene glycol)-block-poly(glutamic acid) diblock copolymer by the amidation reaction, which self-assembled into micellar NPs and was activated inside the acidic endocytic vesicles to perform PDT. The paclitaxel dimer can be stably loaded into the polypeptide NPs and be restored by PDT inside the tumor cells. The formed PPTP@PTX2 NPs remained inert during blood circulation and passively accumulated in the tumor foci, which could be activated within the endocytic vesicles via acid-triggered protonation of DPA groups to generate fluorescence signal and release PTX2 in 4T1 murine breast tumor cells. Upon 660 nm laser irradiation, the activated NPs carried out PDT via TPP and chemotherapy via PTX to induce apoptosis of 4T1 cells and thereby efficiently inhibited 4T1 tumor growth and prevented metastasis of tumor cells.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Ratones , Micelas , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Paclitaxel , Péptidos/farmacología , Péptidos/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA