Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37257450

RESUMEN

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Asunto(s)
Plaquetas , COVID-19 , Humanos , SARS-CoV-2 , Infección Irruptiva , Multiómica , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
Am J Respir Cell Mol Biol ; 71(1): 30-42, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579159

RESUMEN

Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions among these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and the development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. In addition, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aim to reveal new insights into the molecular mechanisms that drive lung injury toward fibrosis and identify potential targets for therapeutic intervention.


Asunto(s)
Comunicación Celular , Microambiente Celular , Fibroblastos , Lesión Pulmonar , Alveolos Pulmonares , Humanos , Animales , Lesión Pulmonar/patología , Lesión Pulmonar/metabolismo , Alveolos Pulmonares/patología , Alveolos Pulmonares/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fibrosis , Macrófagos/metabolismo , Macrófagos/patología
3.
Clin Microbiol Rev ; 35(2): e0018821, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35107300

RESUMEN

The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2 , Humanos , Pulmón , Regeneración , SARS-CoV-2
4.
Nature ; 550(7677): 529-533, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29019984

RESUMEN

In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett's oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett's oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63+KRT5+KRT7+) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett's metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett's oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63+KRT5+KRT7+ basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett's oesophagus.


Asunto(s)
Esófago de Barrett/patología , Linaje de la Célula , Células Epiteliales/patología , Epitelio/patología , Unión Esofagogástrica/patología , Células Madre/patología , Animales , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Rastreo Celular , Esofagitis/metabolismo , Esofagitis/patología , Unión Esofagogástrica/metabolismo , Reflujo Gastroesofágico , Células Caliciformes/metabolismo , Células Caliciformes/patología , Humanos , Queratina-5/metabolismo , Queratina-7/metabolismo , Metaplasia/metabolismo , Metaplasia/patología , Ratones , Fosfoproteínas/metabolismo , Células Madre/metabolismo , Transactivadores/metabolismo
5.
J Allergy Clin Immunol ; 150(5): 1178-1193.e13, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35724763

RESUMEN

BACKGROUND: DJ-1 is an antioxidant protein known to regulate mast cell-mediated allergic response, but its role in airway eosinophilic interactions and allergic inflammation is not known. OBJECTIVE: The aim of this study was to investigate the role of DJ-1 in airway eosinophilic inflammation in vitro and in vivo. METHODS: Ovalbumin-induced airway allergic inflammation was established in mice. ELISA was adopted to analyze DJ-1 and cytokine levels in mouse bronchoalveolar lavage fluid. Transcriptional profiling of mouse lung tissues was conducted by single-cell RNA-sequencing technology. The role of DJ-1 in the differentiation of airway progenitor cells into goblet cells was examined by organoid cultures, immunofluorescence staining, quantitative PCR, and cell transplantation in normal, DJ-1 knockout (KO), or conditional DJ-1 KO mice. RESULTS: This study observed that DJ-1 was increased in the lung tissues of ovalbumin-sensitized and challenged mice. DJ-1 KO mice exhibited reduced airway eosinophil infiltration and goblet cell differentiation. Mechanistically, we discovered that eosinophil-club cell interactions are reduced in the absence of DJ-1. Organoid cultures indicated that eosinophils impair the proliferative potential of club cells. Intratracheal transplantation of DJ-1-deficient eosinophils suppresses airway goblet cell differentiation. Loss of DJ-1 inhibits the metabolism of arachidonic acid into cysteinyl leukotrienes in eosinophils while these secreted metabolites promote airway goblet cell fate in organoid cultures and in vivo. CONCLUSIONS: DJ-1-mediated interactions between airway epithelial progenitor cells and immune cells are essential in controlling airway goblet cell metaplasia and eosinophilia. Blockade of the DJ-1 pathway is protective against airway allergic inflammation.


Asunto(s)
Eosinofilia , Eosinófilos , Ratones , Animales , Ovalbúmina , Inflamación , Líquido del Lavado Bronquioalveolar , Pulmón , Ratones Noqueados , Comunicación Celular , Células Madre , Ratones Endogámicos BALB C
6.
Development ; 146(3)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30696710

RESUMEN

Basal progenitor cells are crucial for the establishment and maintenance of the tracheal epithelium. However, it remains unclear how these progenitor cells are specified during foregut development. Here, we found that ablation of the Wnt chaperone protein Gpr177 (also known as Wntless) in mouse tracheal epithelium causes a significant reduction in the number of basal progenitor cells accompanied by cartilage loss in Shh-Cre;Gpr177loxp/loxp mutants. Consistent with the association between cartilage and basal cell development, Nkx2.1+p63+ basal cells are co-present with cartilage nodules in Shh-Cre;Ctnnb1DM/loxp mutants, which maintain partial cell-cell adhesion but not the transcription regulation function of ß-catenin. More importantly, deletion of Ctnnb1 in the mesenchyme leads to the loss of basal cells and cartilage, concomitant with reduced transcript levels of Fgf10 in Dermo1-Cre;Ctnnb1loxp/loxp mutants. Furthermore, deletion of Fgf receptor 2 (Fgfr2) in the epithelium also leads to significantly reduced numbers of basal cells, supporting the importance of Wnt/Fgf crosstalk in early tracheal development.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Mucosa Respiratoria/embriología , Tráquea/embriología , Vía de Señalización Wnt/fisiología , Animales , Factor 10 de Crecimiento de Fibroblastos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Ratones Mutantes , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Mucosa Respiratoria/citología , Tráquea/citología , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Med Microbiol Immunol ; 211(1): 49-69, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35022857

RESUMEN

Metabolic pathways drive cellular behavior. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes lung tissue damage directly by targeting cells or indirectly by producing inflammatory cytokines. However, whether functional alterations are related to metabolic changes in lung cells after SARS-CoV-2 infection remains unknown. Here, we analyzed the lung single-nucleus RNA-sequencing (snRNA-seq) data of several deceased COVID-19 patients and focused on changes in transcripts associated with cellular metabolism. We observed upregulated glycolysis and oxidative phosphorylation in alveolar type 2 progenitor cells, which may block alveolar epithelial differentiation and surfactant secretion. Elevated inositol phosphate metabolism in airway progenitor cells may promote neutrophil infiltration and damage the lung barrier. Further, multiple metabolic alterations in the airway goblet cells are associated with impaired muco-ciliary clearance. Increased glycolysis, oxidative phosphorylation, and inositol phosphate metabolism not only enhance macrophage activation but also contribute to SARS-CoV-2 induced lung injury. The cytotoxicity of natural killer cells and CD8+ T cells may be enhanced by glycerolipid and inositol phosphate metabolism. Glycolytic activation in fibroblasts is related to myofibroblast differentiation and fibrogenesis. Glycolysis, oxidative phosphorylation, and glutathione metabolism may also boost the aging, apoptosis and proliferation of vascular smooth muscle cells, resulting in pulmonary arterial hypertension. In conclusion, this preliminary study revealed a possible cellular metabolic basis for the altered innate immunity, adaptive immunity, and niche cell function in the lung after SARS-CoV-2 infection. Therefore, patients with COVID-19 may benefit from therapeutic strategies targeting cellular metabolism in future.


Asunto(s)
COVID-19 , Células Epiteliales Alveolares/metabolismo , Linfocitos T CD8-positivos , Humanos , Inmunidad Innata , Pulmón , SARS-CoV-2
8.
Cell Mol Life Sci ; 78(12): 5051-5068, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33864479

RESUMEN

Mammalian lungs are metabolically active organs that frequently encounter environmental insults. Stress responses elicit protective autophagy in epithelial barrier cells and the supportive niche. Autophagy promotes the recycling of damaged intracellular organelles, denatured proteins, and other biological macromolecules for reuse as components required for lung cell survival. Autophagy, usually induced by metabolic defects, regulates cellular metabolism. Autophagy is a major adaptive response that protects cells and organisms from injury. Endogenous region-specific stem/progenitor cell populations are found in lung tissue, which are responsible for epithelial repair after lung damage. Additionally, glucose and fatty acid metabolism is altered in lung stem/progenitor cells in response to injury-related lung fibrosis. Autophagy deregulation has been observed to be involved in the development and progression of other respiratory diseases. This review explores the role and mechanisms of autophagy in regulating lung metabolism and epithelial repair.


Asunto(s)
Autofagia , Células Epiteliales/fisiología , Enfermedades Pulmonares/fisiopatología , Pulmón/fisiología , Animales , Células Epiteliales/citología , Humanos , Pulmón/citología
9.
Cell Mol Life Sci ; 79(1): 42, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34921639

RESUMEN

Targeting airway goblet cell metaplasia is a novel strategy that can potentially reduce the chronic obstructive pulmonary disease (COPD) symptoms. Tumor suppressor liver kinase B1 (LKB1) is an important regulator of the proliferation and differentiation of stem/progenitor cells. In this study, we report that LKB1 expression was downregulated in the lungs of patients with COPD and in those of cigarette smoke-exposed mice. Nkx2.1Cre; Lkb1f/f mice with conditional loss of Lkb1 in mouse lung epithelium displayed airway mucus hypersecretion and pulmonary macrophage infiltration. Single-cell transcriptomic analysis of the lung tissues from Nkx2.1Cre; Lkb1f/f mice further revealed that airway goblet cell differentiation was altered in the absence of LKB1. An organoid culture study demonstrated that Lkb1 deficiency in mouse airway (club) progenitor cells promoted the expression of FIZZ1/RELM-α, which drove airway goblet cell differentiation and pulmonary macrophage recruitment. Additionally, monocyte-derived macrophages in the lungs of Nkx2.1Cre; Lkb1f/f mice exhibited an alternatively activated M2 phenotype, while expressing RELM-α, which subsequently aggravated airway goblet cell metaplasia. Our findings suggest that the LKB1-mediated crosstalk between airway progenitor cells and macrophages regulates airway goblet cell metaplasia. Moreover, our data suggest that LKB1 agonists might serve as a potential therapeutic option to treat respiratory disorders associated with goblet cell metaplasia.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Células Caliciformes/metabolismo , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Animales , Comunicación Celular , Línea Celular , Fibroblastos , Células Caliciformes/patología , Humanos , Pulmón/patología , Ratones , Ratones Transgénicos
10.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499390

RESUMEN

Lung homeostasis and regeneration depend on lung epithelial progenitor cells. Lkb1 (Liver Kinase B1) has known roles in the differentiation of airway epithelial cells during embryonic development. However, the effects of Lkb1 in adult lung epithelial progenitor cell regeneration and its mechanisms of action have not been determined. In this study, we investigated the mechanism by which Lkb1 regulates lung epithelial progenitor cell regeneration. Organoid culture showed that loss of Lkb1 significantly reduced the proliferation of club cells and alveolar type 2 (AT2) cells in vitro. In the absence of Lkb1, there is a slower recovery rate of the damaged airway epithelium in naphthalene-induced airway epithelial injury and impaired expression of surfactant protein C during bleomycin-induced alveolar epithelial damage. Moreover, the expression of autophagy-related genes was reduced in club cells and increased in AT2 cells, but the expression of Claudin-18 was obviously reduced in AT2 cells after Lkb1 knockdown. On the whole, our findings indicated that Lkb1 may promote the proliferation of lung epithelial progenitor cells via a niche-dependent pathway and is required for the repair of the damaged lung epithelium.


Asunto(s)
Pulmón , Células Madre , Pulmón/metabolismo , Células Madre/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Células Epiteliales Alveolares/metabolismo , Diferenciación Celular/genética , Células Epiteliales/metabolismo , Proliferación Celular/fisiología
11.
J Cell Sci ; 125(Pt 4): 932-42, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22421361

RESUMEN

Wnt-ß-catenin signaling regulates cell fate during organ development and postnatal tissue maintenance, but its contribution to specification of distinct lung epithelial lineages is still unclear. To address this question, we used a Cre recombinase (Cre)-LoxP approach to activate canonical Wnt signaling ectopically in developing lung endoderm. We found that persistent activation of canonical Wnt signaling within distal lung endoderm was permissive for normal development of alveolar epithelium, yet led to the loss of developing bronchiolar epithelium and ectasis of distal conducting airways. Activation of canonical Wnt led to ectopic expression of a lymphoid-enhancing factor and a T-cell factor (LEF and TCF, respectively) and absence of SRY (sex-determining region Y)-box 2 (SOX2) and tumor protein p63 (p63) expression in proximal derivatives. Conditional loss of SOX2 in airways phenocopied epithelial differentiation defects observed with ectopic activation of canonical Wnt. Our data suggest that Wnt negatively regulates a SOX2-dependent signaling program required for developmental progression of the bronchiolar lineage.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/metabolismo , Pulmón/citología , Factores de Transcripción SOXB1/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Apoptosis , Bronquiolos/citología , Bronquiolos/metabolismo , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Endodermo/metabolismo , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Pulmón/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Masculino , Ratones , Ratones Transgénicos , Fosfoproteínas/metabolismo , Estabilidad Proteica , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción TCF/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Proteínas Wnt/metabolismo , beta Catenina/biosíntesis , beta Catenina/genética
12.
Environ Pollut ; 347: 123686, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431248

RESUMEN

PM2.5 is known to induce lung injury, but its toxic effects on lung regenerative machinery and the underlying mechanisms remain unknown. In this study, primary mouse alveolar type 2 (AT2) cells, considered stem cells in the gas-exchange barrier, were sorted using fluorescence-activated cell sorting. By developing microfluidic technology with constricted microchannels, we observed that both passage time and impedance opacities of mouse AT2 cells were reduced after PM2.5, indicating that PM2.5 induced a more deformable mechanical property and a higher membrane permeability. In vitro organoid cultures of primary mouse AT2 cells indicated that PM2.5 is able to impair the proliferative potential and self-renewal capacity of AT2 cells but does not affect AT1 differentiation. Furthermore, cell senescence biomarkers, p53 and γ-H2A.X at protein levels, P16ink4a and P21 at mRNA levels were increased in primary mouse AT2 cells after PM2.5 stimulations as shown by immunofluorescent staining and quantitative PCR analysis. Using several advanced single-cell technologies, this study sheds light on new mechanisms of the cytotoxic effects of atmospheric fine particulate matter on lung stem cell behavior.


Asunto(s)
Células Epiteliales Alveolares , Pulmón , Ratones , Animales , Células Epiteliales Alveolares/metabolismo , Pulmón/metabolismo , Diferenciación Celular , Senescencia Celular , Material Particulado/metabolismo
13.
Sci Total Environ ; 933: 173222, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38750750

RESUMEN

Ozone (O3) is a major air pollutant that directly threatens the respiratory system, lung fatty acid metabolism disorder is an important molecular event in pulmonary inflammatory diseases. Liver kinase B1 (LKB1) and nucleotide-binding domain leucine-rich repeat-containing protein 3 (NLRP3) inflammasome not only regulate inflammation, but also have close relationship with fatty acid metabolism. However, the role and mechanism of LKB1 and NLRP3 inflammasome in lung fatty acid metabolism, which may contribute to ozone-induced lung inflammation, remain unclear, and effective strategy for preventing O3-induced pulmonary inflammatory injury is lacking. To explore these, mice were exposed to 1.00 ppm O3 (3 h/d, 5 days), and pulmonary inflammation was determined by airway hyperresponsiveness, histopathological examination, total cells and cytokines in bronchoalveolar lavage fluid (BALF). Targeted fatty acids metabolomics was used to detect medium and long fatty acid in lung tissue. Then, using LKB1-overexpressing adenovirus and NLRP3 knockout (NLRP3-/-) mice to explore the mechanism of O3-induced lung fatty acid metabolism disorder. Results demonstrated that O3 exposure caused pulmonary inflammatory injury and lung medium and long chain fatty acids metabolism disorder, especially decreased dihomo-γ-linolenic acid (DGLA). Meanwhile, LKB1 expression was decreased, and NLRP3 inflammasome was activated in lung of mice after O3 exposure. Additionally, LKB1 overexpression alleviated O3-induced lung inflammation and inhibited the activation of NLRP3 inflammasome. And we found that pulmonary fatty acid metabolism disorder was ameliorated of NLRP3 -/- mice compared with those in wide type mice after O3 exposure. Furthermore, administrating DGLA intratracheally prior to O3 exposure significantly attenuated O3-induced pulmonary inflammatory injury. Taken together, these findings suggest that fatty acids metabolism disorder is involved in O3-induced pulmonary inflammation, which is regulated by LKB1-mediated NLRP3 pathway, DGLA supplement could be a useful preventive strategy to ameliorate ozone-associated lung inflammatory injury.


Asunto(s)
Ácidos Grasos , Proteína con Dominio Pirina 3 de la Familia NLR , Ozono , Animales , Ratones , Ácidos Grasos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neumonía/metabolismo , Neumonía/prevención & control , Contaminantes Atmosféricos/toxicidad , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Inflamasomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo
14.
Am J Respir Cell Mol Biol ; 48(3): 288-98, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23204392

RESUMEN

The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein-C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP(+) cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP(+) population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP(+) cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations.


Asunto(s)
Cromatina/metabolismo , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Pulmón/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Alelos , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/metabolismo , Bronquiolos/citología , Bronquiolos/metabolismo , Diferenciación Celular/genética , Procesos de Crecimiento Celular/genética , Células Cultivadas , Cromatina/genética , Células Epiteliales/citología , Femenino , Fibroblastos/citología , Expresión Génica , Perfilación de la Expresión Génica/métodos , Proteínas Fluorescentes Verdes/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Pulmón/citología , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Proteína C Asociada a Surfactante Pulmonar/biosíntesis , Proteína C Asociada a Surfactante Pulmonar/genética , Regeneración/genética , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo
15.
Stem Cells ; 30(9): 1948-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22696116

RESUMEN

Mechanisms that regulate regional epithelial cell diversity and pathologic remodeling in airways are poorly understood. We hypothesized that regional differences in cell composition and injury-related tissue remodeling result from the type and composition of local progenitors. We used surface markers and the spatial expression pattern of an SFTPC-GFP transgene to subset epithelial progenitors by airway region. Green fluorescent protein (GFP) expression ranged from undetectable to high in a proximal-to-distal gradient. GFP(hi) cells were subdivided by CD24 staining into alveolar (CD24(neg)) and conducting airway (CD24(low)) populations. This allowed for the segregation of three types of progenitors displaying distinct clonal behavior in vitro. GFP(neg) and GFP(low) progenitors both yielded lumen containing colonies but displayed transcriptomes reflective of pseudostratified and distal conducting airways, respectively. CD24(low)GFP(hi) progenitors were present in an overlapping distribution with GFP(low) progenitors in distal airways, yet expressed lower levels of Sox2 and expanded in culture to yield undifferentiated self-renewing progeny. Colony-forming ability was reduced for each progenitor cell type after in vivo bleomycin exposure, but only CD24(low) GFP(hi) progenitors showed robust expansion during tissue remodeling. These data reveal intrinsic differences in the properties of regional progenitors and suggest that their unique responses to tissue damage drive local tissue remodeling.


Asunto(s)
Lesión Pulmonar/patología , Células Madre/efectos de los fármacos , Células Madre/patología , Animales , Bleomicina , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Análisis por Micromatrices , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/patología , Células Madre/metabolismo , Uteroglobina/biosíntesis
16.
EClinicalMedicine ; 58: 101884, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36873427

RESUMEN

Background: We aimed to characterise the long-term health outcomes of survivors of severe acute respiratory syndrome (SARS) and determine their recovery status and possible immunological basis. Methods: We performed a clinical observational study on 14 health workers who survived SARS coronavirus infection between Apr 20, 2003 and Jun 6, 2003 in Haihe Hospital (Tianjin, China). Eighteen years after discharge, SARS survivors were interviewed using questionnaires on symptoms and quality of life, and received physical examination, laboratory tests, pulmonary function tests, arterial blood gas analysis, and chest imaging. Plasma samples were collected for metabolomic, proteomic, and single-cell transcriptomic analyses. The health outcomes were compared 18 and 12 years after discharge. Control individuals were also health workers from the same hospital but did not infect with SARS coronavirus. Findings: Fatigue was the most common symptom in SARS survivors 18 years after discharge, with osteoporosis and necrosis of the femoral head being the main sequelae. The respiratory function and hip function scores of the SARS survivors were significantly lower than those of the controls. Physical and social functioning at 18 years was improved compared to that after 12 years but still worse than the controls. Emotional and mental health were fully recovered. Lung lesions on CT scans remained consistent at 18 years, especially in the right upper lobe and left lower lobe lesions. Plasma multiomics analysis indicated an abnormal metabolism of amino acids and lipids, promoted host defense immune responses to bacteria and external stimuli, B-cell activation, and enhanced cytotoxicity of CD8+ T cells but impaired antigen presentation capacity of CD4+ T cells. Interpretation: Although health outcomes continued to improve, our study suggested that SARS survivors still suffered from physical fatigue, osteoporosis, and necrosis of the femoral head 18 years after discharge, possibly related to plasma metabolic disorders and immunological alterations. Funding: This study was funded by the Tianjin Haihe Hospital Science and Technology Fund (HHYY-202012) and Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-063B, TJYXZDXK-067C).

17.
Cell Death Dis ; 14(4): 276, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076483

RESUMEN

Omicron variants of SARS-CoV-2 have spread rapidly worldwide; however, most infected patients have mild or no symptoms. This study aimed to understand the host response to Omicron infections by performing metabolomic profiling of plasma. We observed that Omicron infections triggered an inflammatory response and innate immune, and adaptive immunity was suppressed, including reduced T-cell response and immunoglobulin antibody production. Similar to the original SARS-CoV-2 strain circulating in 2019, the host developed an anti-inflammatory response and accelerated energy metabolism in response to Omicron infection. However, differential regulation of macrophage polarization and reduced neutrophil function has been observed in Omicron infections. Interferon-induced antiviral immunity was not as strong in Omicron infections as in the original SARS-CoV-2 infections. The host response to Omicron infections increased antioxidant capacity and liver detoxification more than in the original strain. Hence, these findings suggest that Omicron infections cause weaker inflammatory alterations and immune responses than the original SARS-CoV-2 strain.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Inmunidad Adaptativa , Anticuerpos
18.
FEBS Open Bio ; 13(6): 1041-1055, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078963

RESUMEN

Excessive nitric oxide (NO) is often observed in the airways of patients with severe asthma. Here, we show that the NO donor diethylamine NONOate impairs the proliferative capacity of mouse club cells and induces club cell apoptosis, cell cycle arrest, and alterations in lipid metabolism. Our data suggest that NO inhibits club cell proliferation via upregulation of Gdpd2 (glycerophosphodiester phosphodiesterase domain containing 2). During ovalbumin (OVA) challenge, apoptotic club cells are observed, but surviving club cells continue to proliferate. OVA exposure induces Gdpd2 expression; Gdpd2 knockout promotes the proliferation of club cells but inhibits goblet cell differentiation. Elimination of airway NO was found to inhibit goblet cell differentiation from club cells during OVA challenge. Our data reveal that excessive NO might be related to airway epithelial damage in severe asthma and suggest that blockade of the NO-Gdpd2 pathway may be beneficial for airway epithelial restoration.


Asunto(s)
Asma , Óxido Nítrico , Animales , Ratones , Proliferación Celular , Células Epiteliales , Inflamación
19.
J Hazard Mater ; 459: 132227, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37586238

RESUMEN

Exposure to fine atmospheric particulate matter (PM) is known to induce lung inflammation and injury; however, the way in which sophisticated endogenous lung repair and regenerative programs respond to this exposure remains unknown. In this study, we established a whole-body mouse exposure model to mimic real scenarios. Exposure to fine PM (PM with an aerodynamic diameter ≤ 2.5 µm [PM2.5]; mean 1.05 mg/m3) for 1-month elicited inflammatory infiltration and epithelial alterations in the lung, which were resolved 6 months after cessation of exposure. Immune cells that responded to PM2.5 exposure mainly included macrophages and neutrophils. During PM2.5 exposure, alveolar epithelial type 2 cells initiated rapid repair of alveolar epithelial mucosa through proliferation. However, the reparative capacity of airway progenitor cells (club cells) was impaired, which may have been related to the oxidative production of neutrophils or macrophages, as suggested in organoid co-cultures. These data suggested that the pulmonary toxic effects of short-term exposure to fine atmospheric PM at a certain dosage could be overcome through tissue reparative mechanisms.


Asunto(s)
Contaminantes Atmosféricos , Enfermedades Pulmonares , Lesión Pulmonar , Ratones , Animales , Material Particulado/toxicidad , Lesión Pulmonar/inducido químicamente , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Pulmón , Modelos Animales de Enfermedad
20.
Am J Respir Crit Care Med ; 183(12): 1644-52, 2011 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-21471107

RESUMEN

RATIONALE: Previously, we demonstrated a candidate region for susceptibility to airspace enlargement on mouse chromosome 5. However, the specific candidate genes within this region accounting for emphysema-like changes remain unrecognized. c-Kit is a receptor tyrosine kinase within this candidate gene region that has previously been recognized to contribute to the survival, proliferation, and differentiation of hematopoietic stem cells. Increases in the percentage of cells expressing c-Kit have previously been associated with protection against injury-induced emphysema. OBJECTIVES: Determine whether genetic variants of c-Kit are associated with spontaneous airspace enlargement. METHODS: Perform single-nucleotide polymorphism association studies in the mouse strains at the extremes of airspace enlargement phenotype for variants in c-Kit tyrosine kinase. Characterize mice bearing functional variants of c-Kit compared with wild-type controls for the development of spontaneous airspace enlargement. Epithelial cell proliferation was measured in culture. MEASUREMENTS AND MAIN RESULTS: Upstream regulatory single-nucleotide polymorphisms in the divergent mouse strains were associated with the lung compliance difference observed between the extreme strains. c-Kit mutant mice (Kit(W-sh)/(W-sh)), when compared with genetic controls, developed altered lung histology, increased total lung capacity, increased residual volume, and increased lung compliance that persist into adulthood. c-Kit inhibition with imatinib attenuated in vitro proliferation of cells expressing epithelial cell adhesion molecule. CONCLUSIONS: Our findings indicate that c-Kit sustains and/or maintains normal alveolar architecture in the lungs of mice. In vitro data suggest that c-Kit can regulate epithelial cell clonal expansion. The precise mechanisms that c-Kit contributes to the development of airspace enlargement and increased lung compliance remain unclear and warrants further investigation.


Asunto(s)
Enfisema/prevención & control , Proteínas Proto-Oncogénicas c-kit/fisiología , Alveolos Pulmonares/fisiología , Animales , Enfisema/patología , Predisposición Genética a la Enfermedad , Pulmón/fisiopatología , Rendimiento Pulmonar/fisiología , Ratones , Ratones Endogámicos/fisiología , Ratones Mutantes , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-kit/genética , Alveolos Pulmonares/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA