Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genome Res ; 28(9): 1345-1352, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30087104

RESUMEN

To enable the characterization of genetic heterogeneity in tumor cell populations, we developed a novel microfluidic approach that barcodes amplified genomic DNA from thousands of individual cancer cells confined to droplets. The barcodes are then used to reassemble the genetic profiles of cells from next-generation sequencing data. By using this approach, we sequenced longitudinally collected acute myeloid leukemia (AML) tumor populations from two patients and genotyped up to 62 disease relevant loci across more than 16,000 individual cells. Targeted single-cell sequencing was able to sensitively identify cells harboring pathogenic mutations during complete remission and uncovered complex clonal evolution within AML tumors that was not observable with bulk sequencing. We anticipate that this approach will make feasible the routine analysis of AML heterogeneity, leading to improved stratification and therapy selection for the disease.


Asunto(s)
Leucemia Mieloide Aguda/genética , Microfluídica/métodos , Análisis de Secuencia de ADN/métodos , Análisis de la Célula Individual/métodos , Anciano , Células Cultivadas , Evolución Clonal , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Mutación
2.
Oncotarget ; 15: 200-218, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38484152

RESUMEN

We describe the analytical validation of NeXT Personal®, an ultra-sensitive, tumor-informed circulating tumor DNA (ctDNA) assay for detecting residual disease, monitoring therapy response, and detecting recurrence in patients diagnosed with solid tumor cancers. NeXT Personal uses whole genome sequencing of tumor and matched normal samples combined with advanced analytics to accurately identify up to ~1,800 somatic variants specific to the patient's tumor. A personalized panel is created, targeting these variants and then used to sequence cell-free DNA extracted from patient plasma samples for ultra-sensitive detection of ctDNA. The NeXT Personal analytical validation is based on panels designed from tumor and matched normal samples from two cell lines, and from 123 patients across nine cancer types. Analytical measurements demonstrated a detection threshold of 1.67 parts per million (PPM) with a limit of detection at 95% (LOD95) of 3.45 PPM. NeXT Personal showed linearity over a range of 0.8 to 300,000 PPM (Pearson correlation coefficient = 0.9998). Precision varied from a coefficient of variation of 12.8% to 3.6% over a range of 25 to 25,000 PPM. The assay targets 99.9% specificity, with this validation study measuring 100% specificity and in silico methods giving us a confidence interval of 99.92 to 100%. In summary, this study demonstrates NeXT Personal as an ultra-sensitive, highly quantitative and robust ctDNA assay that can be used to detect residual disease, monitor treatment response, and detect recurrence in patients.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Humanos , ADN Tumoral Circulante/genética , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , ADN de Neoplasias/genética , Bioensayo , Biomarcadores de Tumor/genética
3.
Am J Hum Genet ; 82(3): 631-40, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18313023

RESUMEN

Gene expression is a complex quantitative trait partially regulated by genetic variation in DNA sequence. Population differences in gene expression could contribute to some of the observed differences in susceptibility to common diseases and response to drug treatments. We characterized gene expression in the full set of HapMap lymphoblastoid cell lines derived from individuals of European and African ancestry for 9156 transcript clusters (gene-level) evaluated with the Affymetrix GeneChip Human Exon 1.0 ST Array. Gene expression was found to differ significantly between these samples for 383 transcript clusters. Biological processes including ribosome biogenesis and antimicrobial humoral response were found to be enriched in these differential genes, suggesting their possible roles in contributing to the population differences at a higher level than that of mRNA expression and in response to environmental information. Genome-wide association studies for local or distant genetic variants that correlate with the differentially expressed genes enabled identification of significant associations with one or more single-nucleotide polymorphisms (SNPs), consistent with the hypothesis that genetic factors and not simply population identity or other characteristics (age of cell lines, length of culture, etc.) contribute to differences in gene expression in these samples. Our results provide a comprehensive view of the genes differentially expressed between populations and the enriched biological processes involved in these genes. We also provide an evaluation of the contributions of genetic variation and nongenetic factors to the population differences in gene expression.


Asunto(s)
Cromosomas Humanos/genética , Expresión Génica , Variación Genética , Población/genética , Humanos , Polimorfismo de Nucleótido Simple
4.
Am J Hum Genet ; 82(5): 1101-13, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18439551

RESUMEN

We report here the results of testing the pairwise association of 12,747 transcriptional gene-expression values with more than two million single-nucleotide polymorphisms (SNPs) in samples of European (CEPH from Utah; CEU) and African (Yoruba from Ibadan; YRI) ancestry. We found 4,677 and 5,125 significant associations between expression quantitative nucleotides (eQTNs) and transcript clusters in the CEU and the YRI samples, respectively. The physical distance between an eQTN and its associated transcript cluster was referred to as the intrapair distance. An association with 4 Mb or less intrapair distance was defined as local; otherwise, it was defined as distant. The enrichment analysis of functional categories shows that genes harboring the local eQTNs are enriched in the categories related to nucleosome and chromatin assembly; the genes harboring the distant eQTNs are enriched in the categories related to transmembrane signal transduction, suggesting that these biological pathways are likely to play a significant role in regulation of gene expression. We highlight in the EPHX1 gene a deleterious nonsynonymous SNP that is distantly associated with gene expression of ORMDL3, a susceptibility gene for asthma.


Asunto(s)
Población Negra/genética , Variación Genética , Genoma Humano , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Línea Celular , Biología Computacional , Epóxido Hidrolasas/genética , Haplotipos , Humanos
5.
Hum Genet ; 125(1): 81-93, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19052777

RESUMEN

In addition to the differences between populations in transcriptional and translational regulation of genes, alternative pre-mRNA splicing (AS) is also likely to play an important role in regulating gene expression and generating variation in mRNA and protein isoforms. Recently, the genetic contribution to transcript isoform variation has been reported in individuals of recent European descent. We report here results of an investigation of the differences in AS patterns between human populations. AS patterns in 176 HapMap lymphoblastoid cell lines derived from individuals of European and African ancestry were evaluated using the Affymetrix GeneChip Human Exon 1.0 ST Array. A variety of biological processes such as response to stimulus and transcription were found to be enriched among the differentially spliced genes. The differentially spliced genes also include some involved in human diseases that have different prevalence or susceptibility between populations. The genetic contribution to the population differences in transcript isoform variation was then evaluated by a genome-wide association using the HapMap genotypic data on single nucleotide polymorphisms (SNPs). The results suggest that local and distant genetic variants account for a substantial fraction of the observed transcript isoform variation between human populations. Our findings provide new insights into the complexity of the human genome as well as the health disparities between the two populations.


Asunto(s)
Empalme Alternativo , Genoma Humano , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Población Negra/genética , Análisis por Conglomerados , Genética de Población , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Población Blanca/genética
7.
Genome Biol ; 8(4): R64, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17456239

RESUMEN

BACKGROUND: Higher eukaryotes express a diverse population of messenger RNAs generated by alternative splicing. Large-scale methods for monitoring gene expression must adapt in order to accurately detect the transcript variation generated by this splicing. RESULTS: We have designed a high-density oligonucleotide microarray with probesets for more than one million annotated and predicted exons in the human genome. Using these arrays and a simple algorithm that normalizes exon signal to signal from the gene as a whole, we have identified tissue-specific exons from a panel of 16 different normal adult tissues. RT-PCR validation confirms approximately 86% of the predicted tissue-enriched probesets. Pair-wise comparisons between the tissues suggest that as many as 73% of detected genes are differentially alternatively spliced. We also demonstrate how an inclusive exon microarray can be used to discover novel alternative splicing events. As examples, 17 new tissue-specific exons from 11 genes were validated by RT-PCR and sequencing. CONCLUSION: In conjunction with a conceptually simple algorithm, comprehensive exon microarrays can detect tissue-specific alternative splicing events. Our data suggest significant expression outside of known exons and well annotated genes and a high frequency of alternative splicing events. In addition, we identified and validated a number of novel exons with tissue-specific splicing patterns. The tissue map data will likely serve as a valuable source of information on the regulation of alternative splicing.


Asunto(s)
Empalme Alternativo , Exones , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Algoritmos , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Humanos , ARN Mensajero/metabolismo
8.
Am J Hum Genet ; 81(3): 427-37, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17701890

RESUMEN

Cisplatin, a platinating agent commonly used to treat several cancers, is associated with nephrotoxicity, neurotoxicity, and ototoxicity, which has hindered its utility. To gain a better understanding of the genetic variants associated with cisplatin-induced toxicity, we present a stepwise approach integrating genotypes, gene expression, and sensitivity of HapMap cell lines to cisplatin. Cell lines derived from 30 trios of European descent (CEU) and 30 trios of African descent (YRI) were used to develop a preclinical model to identify genetic variants and gene expression that contribute to cisplatin-induced cytotoxicity in two different populations. Cytotoxicity was determined as cell-growth inhibition at increasing concentrations of cisplatin for 48 h. Gene expression in 176 HapMap cell lines (87 CEU and 89 YRI) was determined using the Affymetrix GeneChip Human Exon 1.0 ST Array. We identified six, two, and nine representative SNPs that contribute to cisplatin-induced cytotoxicity through their effects on 8, 2, and 16 gene expressions in the combined, Centre d'Etude du Polymorphisme Humain (CEPH), and Yoruban populations, respectively. These genetic variants contribute to 27%, 29%, and 45% of the overall variation in cell sensitivity to cisplatin in the combined, CEPH, and Yoruban populations, respectively. Our whole-genome approach can be used to elucidate the expression of quantitative trait loci contributing to a wide range of cellular phenotypes.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Genoma Humano , Sitios de Carácter Cuantitativo , Población Negra/genética , Línea Celular , Expresión Génica , Genotipo , Humanos , Concentración 50 Inhibidora , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Población Blanca/genética
9.
Proc Natl Acad Sci U S A ; 104(23): 9758-63, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17537913

RESUMEN

Large interindividual variance has been observed in sensitivity to drugs. To comprehensively decipher the genetic contribution to these variations in drug susceptibility, we present a genome-wide model using human lymphoblastoid cell lines from the International HapMap consortium, of which extensive genotypic information is available, to identify genetic variants that contribute to chemotherapeutic agent-induced cytotoxicity. Our model integrated genotype, gene expression, and sensitivity of HapMap cell lines to drugs. Cell lines derived from 30 trios of European descent (Center d'Etude du Polymorphisme Humain population) and 30 trios of African descent (Yoruban population) were used. Cell growth inhibition at increasing concentrations of etoposide for 72 h was determined by using alamarBlue assay. Gene expression on 176 HapMap cell lines (87 Center d'Etude du Polymorphisme Humain population and 89 Yoruban population) was determined by using the Affymetrix GeneChip Human Exon 1.0ST Array. We evaluated associations between genotype and cytotoxicity, genotype and gene expression and correlated gene expression of the identified candidates with cytotoxicity. The analysis identified 63 genetic variants that contribute to etoposide-induced toxicity through their effect on gene expression. These include genes that may play a role in cancer (AGPAT2, IL1B, and WNT5B) and genes not yet known to be associated with sensitivity to etoposide. This unbiased method can be used to elucidate genetic variants contributing to a wide range of cellular phenotypes induced by chemotherapeutic agents.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Proliferación Celular/efectos de los fármacos , Etopósido/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Variación Genética , Farmacogenética/métodos , Población Negra/genética , Línea Celular , Humanos , Concentración 50 Inhibidora , Modelos Lineales , Análisis de Secuencia por Matrices de Oligonucleótidos , Oncogenes/genética , Oxazinas , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Xantenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA