Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Am J Hum Genet ; 110(4): 625-637, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924774

RESUMEN

Genome-wide association studies (GWASs) have repeatedly reported multiple non-coding single-nucleotide polymorphisms (SNPs) at 2p14 associated with rheumatoid arthritis (RA), but their functional roles in the pathological mechanisms of RA remain to be explored. In this study, we integrated a series of bioinformatics and functional experiments and identified three intronic RA SNPs (rs1876518, rs268131, and rs2576923) within active enhancers that can regulate the expression of SPRED2 directly. At the same time, SPRED2 and ACTR2 influence each other as a positive feedback signal amplifier to strengthen the protective role in RA by inhibiting the migration and invasion of rheumatoid fibroblast-like synoviocytes (FLSs). In particular, the transcription factor CEBPB preferentially binds to the rs1876518-T allele to increase the expression of SPRED2 in FLSs. Our findings decipher the molecular mechanisms behind the GWAS signals at 2p14 for RA and emphasize SPRED2 as a potential candidate gene for RA, providing a potential target and direction for precise treatment of RA.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Proliferación Celular/genética , Células Cultivadas , Cromosomas , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas Represoras/genética , Sinoviocitos/metabolismo , Sinoviocitos/patología , Proteína 2 Relacionada con la Actina/metabolismo
2.
Am J Hum Genet ; 110(8): 1266-1288, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37506691

RESUMEN

Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.


Asunto(s)
Resistencia a la Insulina , Polimorfismo de Nucleótido Simple , Humanos , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo , Resistencia a la Insulina/genética , Factores de Transcripción/genética , Cromatina/genética , Fenotipo , Elementos de Facilitación Genéticos/genética
3.
Ann Surg Oncol ; 31(7): 4250-4260, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38334847

RESUMEN

BACKGROUND: The prognosis of limited-stage small cell lung cancer (LS-SCLC) after surgery usually is estimated at diagnosis, but how the prognosis actually evolves over time for patients who survived for a predefined time is unknown. METHODS: Data on patients with a diagnosis of LS-SCLC after surgery between 2004 and 2015 were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. The 5-year conditional cancer-specific survival (CCSS) and conditional overall survival (COS) were calculated. RESULTS: This study analyzed 997 patients (555 women, 55.7%) with a median age, of 67 years (interquartile range [IQR], 60-73 years). The 5-year CCSS and COS increased from 44.7% and 38.3%, respectively, at diagnosis to 83.7% and 67.9% at 5 years after diagnosis. Although there were large differences with different stages (stages I, II, and III) at diagnosis (respectively 59.5%, 28.4%; 28.1% for CCSS and 50.6%, 24.8%, and 23.6% for COS), the gap decreased with time, and the rates were similar after 5 years (respectively 85.0%, 80.3%, and 79.4% for CCSS; 65.6%, 56.9%, and 61.3% for COS). The 5-year conditional survival for the patients who received lobectomy was better than for those who received sublobectomy or pneumonectomy. Multivariable analyses showed that only age and resection type were independent predictors for CCSS and COS, respectively, throughout the period. CONCLUSION: Conditional survival estimates for LS-SCLC generally increased over time, with the most significant improvement in patients with advanced stage of disease. Resection type and old age represented extremely important determinants of prognosis after a lengthy event-free follow-up period.


Asunto(s)
Neoplasias Pulmonares , Estadificación de Neoplasias , Programa de VERF , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Femenino , Carcinoma Pulmonar de Células Pequeñas/cirugía , Carcinoma Pulmonar de Células Pequeñas/mortalidad , Carcinoma Pulmonar de Células Pequeñas/patología , Persona de Mediana Edad , Masculino , Tasa de Supervivencia , Anciano , Pronóstico , Estudios de Seguimiento , Neumonectomía/mortalidad , Estudios de Cohortes
4.
Surg Endosc ; 38(2): 640-647, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38012439

RESUMEN

BACKGROUND: Lymph node status is an important factor in determining preoperative treatment strategies for stage T1b-T2 esophageal cancer (EC). Thus, the aim of this study was to investigate the risk factors for lymph node metastasis (LNM) in T1b-T2 EC and to establish and validate a risk-scoring model to guide the selection of optimal treatment options. METHODS: Patients who underwent upfront surgery for pT1b-T2 EC between January 2016 and December 2022 were analyzed. On the basis of the independent risk factors determined by multivariate logistic regression analysis, a risk-scoring model for the prediction of LNM was constructed and then validated. The area under the receiver operating characteristic curve (AUC) was used to assess the discriminant ability of the model. RESULTS: The incidence of LNM was 33.5% (214/638) in our cohort, 33.4% (169/506) in the primary cohort and 34.1% (45/132) in the validation cohort. Multivariate analysis confirmed that primary site, tumor grade, tumor size, depth, and lymphovascular invasion were independent risk factors for LNM (all P < 0.05), and patients were grouped based on these factors. A 7-point risk-scoring model based on these variables had good predictive accuracy in both the primary cohort (AUC, 0.749; 95% confidence interval 0.709-0.786) and the validation cohort (AUC, 0.738; 95% confidence interval 0.655-0.811). CONCLUSION: A novel risk-scoring model for lymph node metastasis was established to guide the optimal treatment of patients with T1b-T2 EC.


Asunto(s)
Neoplasias Esofágicas , Humanos , Metástasis Linfática/patología , Estudios Retrospectivos , Factores de Riesgo , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/patología , Escisión del Ganglio Linfático , Ganglios Linfáticos/cirugía , Ganglios Linfáticos/patología
5.
Eur Heart J ; 44(29): 2746-2759, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37377116

RESUMEN

AIMS: The mechanisms underlying ageing-induced vascular remodelling remain unclear. This study investigates the role and underlying mechanisms of the cytoplasmic deacetylase sirtuin 2 (SIRT2) in ageing-induced vascular remodelling. METHODS AND RESULTS: Transcriptome and quantitative real-time PCR data were used to analyse sirtuin expression. Young and old wild-type and Sirt2 knockout mice were used to explore vascular function and pathological remodelling. RNA-seq, histochemical staining, and biochemical assays were used to evaluate the effects of Sirt2 knockout on the vascular transcriptome and pathological remodelling and explore the underlying biochemical mechanisms. Among the sirtuins, SIRT2 had the highest levels in human and mouse aortas. Sirtuin 2 activity was reduced in aged aortas, and loss of SIRT2 accelerated vascular ageing. In old mice, SIRT2 deficiency aggravated ageing-induced arterial stiffness and constriction-relaxation dysfunction, accompanied by aortic remodelling (thickened vascular medial layers, breakage of elastin fibres, collagen deposition, and inflammation). Transcriptome and biochemical analyses revealed that the ageing-controlling protein p66Shc and metabolism of mitochondrial reactive oxygen species (mROS) contributed to SIRT2 function in vascular ageing. Sirtuin 2 repressed p66Shc activation and mROS production by deacetylating p66Shc at lysine 81. Elimination of reactive oxygen species by MnTBAP repressed the SIRT2 deficiency-mediated aggravation of vascular remodelling and dysfunction in angiotensin II-challenged and aged mice. The SIRT2 coexpression module in aortas was reduced with ageing across species and was a significant predictor of age-related aortic diseases in humans. CONCLUSION: The deacetylase SIRT2 is a response to ageing that delays vascular ageing, and the cytoplasm-mitochondria axis (SIRT2-p66Shc-mROS) is important for vascular ageing. Therefore, SIRT2 may serve as a potential therapeutic target for vascular rejuvenation.


Asunto(s)
Sirtuina 2 , Remodelación Vascular , Ratones , Humanos , Animales , Anciano , Sirtuina 2/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento , Ratones Noqueados
6.
BMC Med ; 21(1): 271, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491271

RESUMEN

BACKGROUND: Stroke is a major cause of mortality and long-term disability worldwide. Whether the associations between brain imaging-derived phenotypes (IDPs) and stroke are causal is uncertain. METHODS: We performed two-sample bidirectional Mendelian randomization (MR) analyses to explore the causal associations between IDPs and stroke. Summary data of 587 brain IDPs (up to 33,224 individuals) from the UK Biobank and five stroke types (sample size range from 301,663 to 446,696, case number range from 5,386 to 40,585) from the MEGASTROKE consortium were used. RESULTS: Forward MR indicated 14 IDPs belong to projection fibers or association fibers were associated with stroke. For example, higher genetically determined mean diffusivity (MD) in the right external capsule was causally associated with an increased risk of small vessel stroke (IVW OR = 2.76, 95% CI 2.07 to 3.68, P = 5.87 × 10-12). Reverse MR indicated that genetically determined higher risk of any ischemic stroke was associated with increased isotropic or free water volume fraction (ISOVF) in body of corpus callosum (IVW ß = 0.23, 95% CI 0.14 to 0.33, P = 3.22 × 10-7). This IDP is a commissural fiber and it is not included in the IDPs identified by forward MR. CONCLUSIONS: We identified 14 IDPs with statistically significant evidence of causal effects on stroke or stroke subtypes. We also identified potential causal effects of stroke on one IDP of commissural fiber. These findings might guide further work toward identifying preventative strategies at the brain imaging levels.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/genética , Encéfalo/diagnóstico por imagen , Fenotipo , Neuroimagen , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
7.
BMC Genomics ; 22(1): 25, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407105

RESUMEN

BACKGROUND: Olfactory systems take on important tasks to distinguish salient information from a complex olfactory environment, such as locating hosts, mating, aggression, selecting oviposition sites, and avoiding predators. The olfactory system of an adult insect consists of two pairs of main olfactory appendages on the head, the antennae, and the palps, which are covered with sensilla. Benzothiazole and 1-octen-3-ol could elicit oviposition behavior in gravid B. dorsalis are regarded as oviposition stimulants. However, the mechanism for how B. dorsalis percepts benzothiazole and 1-octen-3-ol still remains unknown. RESULTS: We conducted a comparative analysis of the antennal transcriptomes in different genders of B. dorsalis using Illumina RNA sequencing (RNA-seq). We identified a total of 1571 differentially expressed genes (DEGs) among the two sexes, including 450 female-biased genes and 1121 male-biased genes. Among these DEGs, we screened out 24 olfaction-related genes and validated them by qRT-PCR. The expression patterns of these genes in different body parts were further determined. In addition, we detected the expression profiles of the screened female-biased chemosensory genes in virgin and mated female flies. Furthermore, the oviposition stimulants-induced expression profilings were used to identify chemosensory genes potentially responsible for benzothiazole and 1-octen-3-ol perception in this fly. CONCLUSIONS: The results from this study provided fundamental data of chemosensory DEGs in the B. dorsalis antenna. The odorant exposure assays we employed lay a solid foundation for the further research regarding the molecular mechanism of benzothiazole and 1-octen-3-ol mediated oviposition behavior in B. dorsalis.


Asunto(s)
Receptores Odorantes , Tephritidae , Animales , Antenas de Artrópodos/metabolismo , Femenino , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Masculino , Oviposición , Receptores Odorantes/genética , Olfato/genética , Tephritidae/genética , Transcriptoma
8.
Am J Hum Genet ; 102(5): 776-793, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706346

RESUMEN

Genome-wide association studies (GWASs) have reproducibly associated variants within intergenic regions of 1p36.12 locus with osteoporosis, but the functional roles underlying these noncoding variants are unknown. Through an integrative functional genomic and epigenomic analyses, we prioritized rs6426749 as a potential causal SNP for osteoporosis at 1p36.12. Dual-luciferase assay and CRISPR/Cas9 experiments demonstrate that rs6426749 acts as a distal allele-specific enhancer regulating expression of a lncRNA (LINC00339) (∼360 kb) via long-range chromatin loop formation and that this loop is mediated by CTCF occupied near rs6426749 and LINC00339 promoter region. Specifically, rs6426749-G allele can bind transcription factor TFAP2A, which efficiently elevates the enhancer activity and increases LINC00339 expression. Downregulation of LINC00339 significantly increases the expression of CDC42 in osteoblast cells, which is a pivotal regulator involved in bone metabolism. Our study provides mechanistic insight into how a noncoding SNP affects osteoporosis by long-range interaction, a finding that could indicate promising therapeutic targets for osteoporosis.


Asunto(s)
Alelos , Cromosomas Humanos Par 1/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Conformación de Ácido Nucleico , Osteoporosis/genética , Polimorfismo de Nucleótido Simple/genética , ARN Largo no Codificante/genética , Pueblo Asiatico/genética , Secuencia de Bases , Densidad Ósea/genética , Huesos/metabolismo , Sistemas CRISPR-Cas/genética , Línea Celular , Cromatina/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas , Unión Proteica , Sitios de Carácter Cuantitativo/genética , ARN Largo no Codificante/química , Reproducibilidad de los Resultados , Factores de Riesgo , Factores de Transcripción/metabolismo
9.
Brief Bioinform ; 20(1): 26-32, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28968709

RESUMEN

Genome-wide association studies (GWASs) are an effective strategy to identify susceptibility loci for human complex diseases. However, missing heritability is still a big problem. Most GWASs single-nucleotide polymorphisms (SNPs) are located in noncoding regions, which has been considered to be the unexplored territory of the genome. Recently, data from the Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics projects have shown that many GWASs SNPs in the noncoding regions fall within regulatory elements. In this study, we developed a pipeline named functional disease-associated SNPs prediction (FDSP), to identify novel susceptibility loci for complex diseases based on the interpretation of the functional features for known disease-associated variants with machine learning. We applied our pipeline to predict novel susceptibility SNPs for type 2 diabetes (T2D) and hypertension. The predicted SNPs could explain heritability beyond that explained by GWAS-associated SNPs. Functional annotation by expression quantitative trait loci analyses showed that the target genes of the predicted SNPs were significantly enriched in T2D or hypertension-related pathways in multiple tissues. Our results suggest that combining GWASs and regulatory features data could identify additional functional susceptibility SNPs for complex diseases. We hope FDSP could help to identify novel susceptibility loci for complex diseases and solve the missing heritability problem.


Asunto(s)
Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Polimorfismo de Nucleótido Simple , Programas Informáticos , Algoritmos , Biología Computacional , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Humanos , Hipertensión/genética , Aprendizaje Automático , Modelos Genéticos , Modelos Estadísticos , Herencia Multifactorial , Sitios de Carácter Cuantitativo , Secuencias Reguladoras de Ácidos Nucleicos
10.
Bioinformatics ; 36(18): 4739-4748, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539144

RESUMEN

MOTIVATION: CircRNAs are an abundant class of non-coding RNAs with widespread, cell-/tissue-specific patterns. Previous work suggested that epigenetic features might be related to circRNA expression. However, the contribution of epigenetic changes to circRNA expression has not been investigated systematically. Here, we built a machine learning framework named CIRCScan, to predict circRNA expression in various cell lines based on the sequence and epigenetic features. RESULTS: The predicted accuracy of the expression status models was high with area under the curve of receiver operating characteristic (ROC) values of 0.89-0.92 and the false-positive rates of 0.17-0.25. Predicted expressed circRNAs were further validated by RNA-seq data. The performance of expression-level prediction models was also good with normalized root-mean-square errors of 0.28-0.30 and Pearson's correlation coefficient r over 0.4 in all cell lines, along with Spearman's correlation coefficient ρ of 0.33-0.46. Noteworthy, H3K79me2 was highly ranked in modeling both circRNA expression status and levels across different cells. Further analysis in additional nine cell lines demonstrated a significant enrichment of H3K79me2 in circRNA flanking intron regions, supporting the potential involvement of H3K79me2 in circRNA expression regulation. AVAILABILITY AND IMPLEMENTATION: The CIRCScan assembler is freely available online for academic use at https://github.com/johnlcd/CIRCScan. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Epigenómica , ARN Circular , Epigénesis Genética , Aprendizaje Automático , ARN/genética , Curva ROC
11.
BMC Urol ; 21(1): 105, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362339

RESUMEN

BACKGROUND: Intravenous misplacement of a nephrostomy tube is a rare complication of percutaneous nephrolithotomy (PCNL) or percutaneous nephrostomy. The mechanism of misplacement of a nephrostomy tube into the vascular system is seldom investigated. One type of the possible mechanism is that the puncture needle penetrates a major intrarenal tributary of the renal vein and enters the collecting system. However, the guidewire is located outside the collecting system near the large branches of renal vein or perforates into the renal vein. The dilation is performed and causes a large torn injury. Subsequently, the nephrostomy tube is placed inside the vessel when radiological monitoring is not used. However, there is no imaging evidence and the scene of procedure is not demonstrated. This paper reports two cases of visualization of the renal vein filled with contrast agent during PCNL. The findings may be good evidence to support the step of renal vein injury in patients with intravenous nephrostomy tube misplacement. CASE PRESENTATION: We presented two cases with visualization of the renal vein filled with contrast agent during PCNL. In the process of injecting the contrast agent through the puncture needle, we could see the renal vein. Moreover, it was identified that the puncture needle tip was not on the optimal position. The position of puncture needle tip lay outside the collecting system, which was close to the calyceal infundibulum and branches of renal vein. CONCLUSIONS: Visualization of the renal vein filled with contrast agent may be good evidence to verify the renal vein injury in patients with intravenous nephrostomy tube misplacement during PCNL or percutaneous nephrostomy. The suboptimal location of the puncture needle tip and visualization of the renal vein filled with contrast agent indicate the renal vein injury. One type of mechanism of intravenous nephrostomy tube misplacement is as following. Firstly, the guidewire stays outside the collecting system. Subsequently, dilatation directed by the guidewire results in the injury of the vein. Then, the nephrostomy tube migrates into the venous system due to prompt tube inserting and the direction of the sheath and/or the guidewire to the injured vein.


Asunto(s)
Medios de Contraste/análisis , Errores Médicos , Nefrolitotomía Percutánea/efectos adversos , Nefrostomía Percutánea/efectos adversos , Venas Renales/lesiones , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiografía , Venas Renales/diagnóstico por imagen
12.
Clin Sci (Lond) ; 134(6): 657-676, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32219347

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Metabolic dysfunction is a fundamental core mechanism underlying CVDs. Previous studies generally focused on the roles of long-chain fatty acids (LCFAs) in CVDs. However, a growing body of study has implied that short-chain fatty acids (SCFAs: namely propionate, malonate, butyrate, 2-hydroxyisobutyrate (2-HIBA), ß-hydroxybutyrate, crotonate, succinate, and glutarate) and their cognate acylations (propionylation, malonylation, butyrylation, 2-hydroxyisobutyrylation, ß-hydroxybutyrylation, crotonylation, succinylation, and glutarylation) participate in CVDs. Here, we attempt to provide an overview landscape of the metabolic pattern of SCFAs in CVDs. Especially, we would focus on the SCFAs and newly identified acylations and their roles in CVDs, including atherosclerosis, hypertension, and heart failure.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Ácidos Grasos Volátiles/metabolismo , Acetilación , Animales , Enfermedades Cardiovasculares/genética , Humanos
13.
Clin Exp Pharmacol Physiol ; 47(5): 877-885, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31953866

RESUMEN

Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been identified as an oncogene and is involved in acute myeloid leukaemia (AML). Autophagy contributes to tumourigenesis and cancer cell survival. The purpose of this study was to investigate the regulatory role and mechanism of UCA1 in AML cell viability by its effect on autophagy. The expression of UCA1, miR-96-5p, and ATG7 was determined by qRT-PCR and western blot. Cell proliferation was examined by MTT assay. The autophagy level was assessed by green fluorescent protein (GFP)-LC3 immunofluorescence and western blot. The interaction between UCA1 and miR-96-5p or ATG7 was analyzed by luciferase reporter activity. The results showed that UCA1 promoted AML cell proliferation by inducing autophagy. Mechanistically, UCA1 acted as a sponge of miR-96-5p by binding to miR-96-5p. ATG7 was a direct target of miR-96-5p and positively regulated by UCA1. Further results showed that the miR-96-5p mimic effectively counteracted the UCA1 overexpression-mediated induction of the ATG7/autophagy pathway. Collectively, UCA1 functions as a sponge of miR-96-5p to upregulate its target ATG7, thereby resulting in autophagy induction. Our findings reveal a UCA1-mediated molecular mechanism responsible for autophagy induction in AML and help to improve the understanding of the molecular mechanism of AML progression.


Asunto(s)
Autofagia , Leucemia Mieloide Aguda/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Transducción de Señal , Células U937
14.
Yi Chuan ; 42(9): 889-897, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32952123

RESUMEN

Osteoporosis is a typical polygenic disease, and its heritability is as high as 85%. The incidence of osteoporosis has jumped to the fifth among the common diseases. Although a large number of osteoporosis-susceptible SNPs have been identified, most of them are in the non-coding regions of the genome and the functional mechanisms are unknown. The purpose of this study was to explore the function of non-coding osteoporosis-susceptible SNP rs4325274 and dissect the molecular regulatory mechanisms through integrating bioinformatics analysis and functional experiments. Firstly, we found the SNP rs4325274 resided in a putative enhancer element through functional annotation. eQTL and Hi-C analysis found that the SOX6 gene might be a potential distal target of rs4325274. We conducted the motif prediction using multiple databases and verified the result using ChIP-seq data from GEO database. The result showed that the transcription factor HNF1A could preferentially bind to SNP rs4325274-G allele. We further demonstrated that SNP rs4325274 acted as an enhancer regulating SOX6 gene expression by using dual-luciferase reporter assays. Knockdown of HNF1A decreased the SOX6 gene expression. Taken together, our results uncovered a new mechanism of a non-coding functional SNP rs4325274 as a distal enhancer to modulate SOX6 expression, which provides new insights into deciphering molecular regulatory mechanisms underlying non-coding susceptibility SNPs on complex diseases.


Asunto(s)
Osteoporosis , Polimorfismo de Nucleótido Simple , Factores de Transcripción SOXD/genética , Alelos , Predisposición Genética a la Enfermedad , Humanos , Osteoporosis/genética , Sitios de Carácter Cuantitativo
15.
Cancer Sci ; 110(1): 107-117, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30387548

RESUMEN

Gliomas are the most common central nervous system tumors. They show malignant characteristics indicating rapid proliferation and a high invasive capacity and are associated with a poor prognosis. In our previous study, p68 was overexpressed in glioma cells and correlated with both the degree of glioma differentiation and poor overall survival. Downregulating p68 significantly suppressed proliferation in glioma cells. Moreover, we found that the p68 gene promoted glioma cell growth by activating the nuclear factor-κB signaling pathway by a downstream molecular mechanism that remains incompletely understood. In this study, we found that dual specificity phosphatase 5 (DUSP5) is a downstream target of p68, using microarray analysis, and that p68 negatively regulates DUSP5. Upregulating DUSP5 in stably expressing cell lines (U87 and LN-229) suppressed proliferation, invasion, and migration in glioma cells in vitro, consistent with the downregulation of p68. Furthermore, upregulating DUSP5 inhibited ERK phosphorylation, whereas downregulating DUSP5 rescued the level of ERK phosphorylation, indicating that DUSP5 might negatively regulate ERK signaling. Additionally, we show that DUSP5 levels were lower in high-grade glioma than in low-grade glioma. These results suggest that the p68-induced negative regulation of DUSP5 promoted invasion by glioma cells and mediated the activation of the ERK signaling pathway.


Asunto(s)
Neoplasias Encefálicas/genética , ARN Helicasas DEAD-box/genética , Fosfatasas de Especificidad Dual/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , ARN Helicasas DEAD-box/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glioma/metabolismo , Glioma/patología , Humanos , Sistema de Señalización de MAP Quinasas/genética , Invasividad Neoplásica , Fosforilación , Interferencia de ARN
16.
Artículo en Inglés | MEDLINE | ID: mdl-38723979
17.
BMC Vet Res ; 15(1): 304, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31438945

RESUMEN

BACKGROUND: Brucellosis is a worldwide zoonotic infectious disease that is transmitted in various ways and causes great harm to humans and animals. The brucellosis pathogen is Brucella, which mainly resides in macrophage cells and survives and replicates in host cells. However, the mechanisms underlying Brucella survival in macrophage cells have not been thoroughly elucidated to date. Peroxiredoxin 6 (Prdx6) is a bifunctional protein that shows not only GSH peroxidase activity but also phospholipase A2 activity and plays important roles in combating oxidative damage and regulating apoptosis. RESULTS: Recombinant mouse (Mus musculus) Prdx6 (MmPrdx6) was expressed and purified, and monoclonal antibodies against MmPrdx6 were prepared. Using the Brucella suis S2 strain to infect RAW264.7 murine macrophages, the level of intracellular Prdx6 expression first decreased and later increased following infection. Overexpressing Prdx6 in macrophages resulted in an increase in B. suis S2 strain levels in RAW264.7 cells, while knocking down Prdx6 reduced the S2 levels in cells. CONCLUSIONS: Host Prdx6 can increase the intracellular survival of B. suis S2 strain and plays a role in Brucella infection.


Asunto(s)
Brucella suis/fisiología , Brucelosis/microbiología , Peroxiredoxina VI/metabolismo , Animales , Femenino , Regulación de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7
18.
Circulation ; 136(21): 2051-2067, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-28947430

RESUMEN

BACKGROUND: Pathological cardiac hypertrophy induced by stresses such as aging and neurohumoral activation is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the roles of SIRT2 in aging-related and angiotensin II (Ang II)-induced pathological cardiac hypertrophy. METHODS: Male C57BL/6J wild-type and Sirt2 knockout mice were subjected to the investigation of aging-related cardiac hypertrophy. Cardiac hypertrophy was also induced by Ang II (1.3 mg/kg/d for 4 weeks) in male C57BL/6J Sirt2 knockout mice, cardiac-specific SIRT2 transgenic (SIRT2-Tg) mice, and their respective littermates (8 to ≈12 weeks old). Metformin (200 mg/kg/d) was used to treat wild-type and Sirt2 knockout mice infused with Ang II. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: SIRT2 protein expression levels were downregulated in hypertrophic hearts from mice. Sirt2 knockout markedly exaggerated cardiac hypertrophy and fibrosis and decreased cardiac ejection fraction and fractional shortening in aged (24-month-old) mice and Ang II-infused mice. Conversely, cardiac-specific SIRT2 overexpression protected the hearts against Ang II-induced cardiac hypertrophy and fibrosis and rescued cardiac function. Mechanistically, SIRT2 maintained the activity of AMP-activated protein kinase (AMPK) in aged and Ang II-induced hypertrophic hearts in vivo as well as in cardiomyocytes in vitro. We identified the liver kinase B1 (LKB1), the major upstream kinase of AMPK, as the direct target of SIRT2. SIRT2 bound to LKB1 and deacetylated it at lysine 48, which promoted the phosphorylation of LKB1 and the subsequent activation of LKB1-AMPK signaling. Remarkably, the loss of SIRT2 blunted the response of AMPK to metformin treatment in mice infused with Ang II and repressed the metformin-mediated reduction of cardiac hypertrophy and protection of cardiac function. CONCLUSIONS: SIRT2 promotes AMPK activation by deacetylating the kinase LKB1. Loss of SIRT2 reduces AMPK activation, promotes aging-related and Ang II-induced cardiac hypertrophy, and blunts metformin-mediated cardioprotective effects. These findings indicate that SIRT2 will be a potential target for therapeutic interventions in aging- and stress-induced cardiac hypertrophy.


Asunto(s)
Cardiomegalia/prevención & control , Metformina/farmacología , Miocardio/enzimología , Sirtuina 2/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilación , Factores de Edad , Envejecimiento/metabolismo , Angiotensina II , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Predisposición Genética a la Enfermedad , Lisina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica/efectos de los fármacos , Miocardio/patología , Fenotipo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Sirtuina 2/deficiencia , Sirtuina 2/genética , Volumen Sistólico/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
19.
Exp Cell Res ; 360(2): 358-364, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28935468

RESUMEN

LAG3 is a surface molecule found on a subset of immune cells. The precise function of LAG3 appears to be context-dependent. In this study, we investigated the effect of LAG3 on CD4+CD25- T cells from non-small cell lung cancer (NSCLC) patients. We found that in the peripheral blood mononuclear cells of NSCLC patients, LAG3 was significantly increased in CD4+ T cells directly ex vivo and primarily in the CD4+CD25- fraction, which was regulated by prolonged TCR stimulation and the presence of IL-27. TCR stimulation also increased CD25 expression, but not Foxp3 expression, in LAG3-expressing CD4+CD25- cells Compared to LAG3-nonexpressing CD4+CD25- cells, LAG3-expressing CD4+CD25- cells presented significantly higher levels of PD1 and TIM3, two inhibitory receptors best described in exhausted CD8+ T effector cells. LAG3-expressing CD4+CD25- cells also presented impaired proliferation compared with LAG3-nonexpressing CD4+CD25- cells but could be partially rescued by inhibiting both PD1 and TIM3. Interestingly, CD8+ T cells co-incubated with LAG3-expressing CD4+CD25- cells at equal cell numbers demonstrated significantly lower proliferation than CD8+ T cells incubated alone. Co-culture with CD8+ T cell and LAG3-expressing CD4+CD25- T cell also upregulated soluble IL-10 level in the supernatant, of which the concentration was positively correlated with the number of LAG3-expressing CD4+CD25- T cells. In addition, we found that LAG3-expressing CD4+CD25- T cells infiltrated the resected tumors and were present at higher frequencies of in metastases than in primary tumors. Taken together, these data suggest that LAG3-expressing CD4+CD25- T cells represent another regulatory immune cell type with potential to interfere with anti-tumor immunity.


Asunto(s)
Antígenos CD/fisiología , Linfocitos T CD4-Positivos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Neoplasias Pulmonares/inmunología , Adulto , Anciano , Antígenos CD/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Casos y Controles , Células Cultivadas , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/fisiología , Escape del Tumor/inmunología , Proteína del Gen 3 de Activación de Linfocitos
20.
Nucleic Acids Res ; 44(6): 2613-27, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26615201

RESUMEN

The Hox genes encode transcription factors that determine embryonic pattern formation. In embryonic stem cells, the Hox genes are silenced by PRC2. Recent studies have reported a role for long noncoding RNAs in PRC2 recruitment in vertebrates. However, little is known about how PRC2 is recruited to the Hox genes in ESCs. Here, we used stable knockdown and knockout strategies to characterize the function of the long noncoding RNAGm15055 in the regulation of Hoxa genes in mouse ESCs. We found that Gm15055 is highly expressed in mESCs and its expression is maintained by OCT4.Gm15055 represses Hoxa gene expression by recruiting PRC2 to the cluster and maintaining the H3K27me3 modification on Hoxa promoters. A chromosome conformation capture assay revealed the close physical association of the Gm15055 locus to multiple sites at the Hoxa gene cluster in mESCs, which may facilitate the in cis targeting of Gm15055RNA to the Hoxa genes. Furthermore, an OCT4-responsive positive cis-regulatory element is found in the Gm15055 gene locus, which potentially regulates both Gm15055 itself and the Hoxa gene activation. This study suggests how PRC2 is recruited to the Hoxa locus in mESCs, and implies an elaborate mechanism for Hoxa gene regulation in mESCs.


Asunto(s)
Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/metabolismo , Familia de Multigenes , Factor 3 de Transcripción de Unión a Octámeros/genética , Complejo Represivo Polycomb 2/genética , ARN Largo no Codificante/genética , Animales , Línea Celular , Cromatina/química , Cromatina/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA