Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Fish Shellfish Immunol ; 144: 109274, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072135

RESUMEN

Interferon-gamma (IFN-γ) is an inflammatory cytokine that plays a crucial role in regulating both innate and cell-mediated immune responses by binding to a receptor complex made up of IFNGR1 and IFNGR2. In this study, the complete cDNA of IFN-γ and IFNGR1 from Nibea albiflora were cloned and functionally characterized (named NaIFN-γ and NaIFNGR1), whose complete cDNA sequences were 1593 bp and 2792 bp, encoding 201 and 399 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that the concluded amino acids sequences of NaIFN-γ and NaIFNGR1 shared high identity with their teleost orthologues including the IFN-γ signature and nuclear localization signal (NLS) motif in NaIFN-γ and FN Ⅲ domain in NaIFNGR1. Real-time PCR showed that NaIFN-γ and NaIFNGR1 constitutively expressed in all tested tissues, such as the head-kidney, spleen, liver, kidney, gill, muscle, blood, and intestine with the highest expression of NaIFN-γ and NaIFNGR1 appearing in the liver and gill, respectively. After experiencing stimulation with Polyinosinic-polycytidylic acid (Poly (I:C)), Vibrio alginolyticus (V. alginolyticus) or Vibrio parahaemolyticus (V. parahaemolyticus), NaIFN-γ and NaIFNGR1 mRNA were up-regulated with the time-dependent model. Due to the presence of a nuclear localization signal (NLS), the subcellular localization revealed that NaIFN-γ dispersed throughout the cytoplasm and nucleus. NaIFNGR1, as a member of Cytokine receptor family B, was primarily expressed on the cell membrane. When NaIFN-γ and NaIFNGR1 were co-transfected, their fluorescence signals overlapped on the membrane of HEK 293T cells indicating the potential interaction between IFN-γ and IFNGR1. The GST-pull-down results further showed that NaIFN-γ could directly interact with the extracellular region of NaIFNGR1, further confirming the affinity between IFN-γ and IFNGR1. Taken together, the results firstly demonstrated that the NaIFN-γ ligand-receptor system existed in N.albiflora and played a pivotal part in N.albiflora's immune response against pathogenic bacterial infections, which contributed to the better understanding of the role of IFN-γ in the immunomodulatory mechanisms of teleost.


Asunto(s)
Interferón gamma , Perciformes , Animales , Señales de Localización Nuclear/genética , Secuencia de Aminoácidos , Filogenia , ADN Complementario , Aminoácidos/genética
2.
Fish Shellfish Immunol ; 151: 109654, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810711

RESUMEN

Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.

3.
Fish Shellfish Immunol ; 144: 109258, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042226

RESUMEN

Large yellow croaker (Larimichthys crocea) is the most productive marine fish in China. Cryptocaryon irritans is an extremely destructive parasite that causes great economic losses in large yellow croaker aquaculture industry. Therefore, it is very necessary to study the immune response of large yellow croaker in response to C. irritans infection. In this study, the transcriptomic profiles of large yellow croaker were sequenced and analyzed in the brain and head kidney at 72 h after C. irritans infection. Cytokines and chemokines related terms were significantly enriched based on the GO enrichment of down-regulated differentially expressed genes (DEGs) from the head kidney. Meanwhile, cytokine-cytokine receptor interaction was significantly enriched based on the KEGG enrichment of up-regulated DEGs from the brain and down-regulated DEGs from the head kidney, respectively. Moreover, the majority of inflammation-related DEGs were significantly up-regulated in the brain, but distinctly down-regulated in the head kidney. These results showed that the brain and head kidney might play different roles against C. irritans infection, and the inflammatory response of large yellow croaker may be restrained during C. irritans infection. Taken together, the transcriptomic analyses will be helpful to more comprehensively understand the immune mechanism of teleost against C. irritans infection, and provide a theoretical basis for the prevention and treatment of Cryptosporidiosis.


Asunto(s)
Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , Hymenostomatida , Perciformes , Animales , Cilióforos/fisiología , Proteínas de Peces/genética , Perfilación de la Expresión Génica/veterinaria
4.
Fish Shellfish Immunol ; 140: 108903, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423402

RESUMEN

The common Chinese cuttlefish (Sepiella japonica) is an essential species for stock enhancement by releasing juveniles in the East China Sea now. S. japonica is susceptible to bacterial diseases during parental breeding. In vertebrates, Interleukin-17 (IL-17) cytokine family plays critical roles in both acute and chronic inflammatory responses. In Cephalopoda, few studies have been reported on IL-17 genes so far. In this study, twenty IL-17 transcripts obtained from S. japonica were divided into eight groups (designated as Sj_IL-17-1 to Sj_IL-17-8). Multiple alignment analysis showed that IL-17s in S. japonica and human both contained four ß-folds (ß1-ß4), except for Sj_IL-17-6 with two ß-folds (ß1 and ß2), and the third and fourth ß-folds of Sj_IL-17-5 and Sj_IL-17-8 were longer than those of other Sj_IL-17. Protein structure and conserved motifs analysis demonstrated that Sj_IL-17-5 and Sj_IL-17-6 displayed different protein structure with respect to other six Sj_IL-17 proteins. The homology and phylogenetic analysis of amino acids showed that Sj_IL-17-5, Sj_IL-17-6 and Sj_IL-17-8 had low homology with the other five Sj_IL-17s. Eight Sj_IL-17 mRNAs were ubiquitously expressed in ten examined tissues, with dominant expression in the hemolymph. qRT-PCR data showed that the mRNA expression levels of Sj_IL-17-2, Sj_IL-17-3, Sj_IL-17-6, and Sj_IL-17-8 were significantly up-regulated in infected cuttlefishes, and Sj_IL-17-2, Sj_IL-17-6, Sj_IL-17-7, and Sj_IL-17-8 mRNAs Awere significantly up-regulated after bath infection of Vibrio harveyi, suggesting that certain Sj_IL-17s were involved in the immune response of S. japonica against V. harveyi infection. These results implied that Sj_IL-17s were likely to have distinct functional diversification. This study aims to understand the involvement of Sj_IL-17 genes in immune responses of cuttlefish against bacterial infections.


Asunto(s)
Decapodiformes , Interleucina-17 , Vibriosis , Vibrio , Animales , Humanos , Decapodiformes/genética , Decapodiformes/inmunología , Decapodiformes/microbiología , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/inmunología , Filogenia , Vibriosis/inmunología , Vibriosis/veterinaria , China
5.
Fish Shellfish Immunol ; 132: 108509, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36581254

RESUMEN

Tumor necrosis factor α (TNFα), a cytokine mainly secreted by active macrophages and monocytes, causes hemorrhagic necrosis of tumor tissues, kills tumor cells, regulates inflammatory responses, and plays a crucial role in innate immunity. In this study, TNFα of Sepiella japonica (named as SjTNFα) was acquired, whose full-length cDNA was 1206 bp (GenBank accession no. ON357428), containing a 5' UTR of 185 bp, a 3' UTR of 137 bp and an open reading frame (ORF) of 1002bp to encode a putative peptide of 333 amino acids for constructing the transmembrane domain and the cytoplasmic TNF domain. Its predicted pI was 8.69 and the theoretical molecular weight was 44.72 KDa. Multiple sequence alignment and phylogenetic analysis showed that SjTNFα had the highest homology to Octopus sinensis, they fell into a unified branch and further clustered with other animals. Real-time PCR indicated that SjTNFα was widely expressed in all subject tissues, including spleen, pancreas, gill, heart, brain, optic lobe, liver and intestine, and exhibited the highest in the liver and the lowest in the brain. The relative expression of SjTNFα varied at the developmental period of juvenile stage, pre-spawning and oviposition in the squid, with the highest in the liver at the juvenile stage and oviposition, and in the optic lobe of pre-spawning. After being infected with Vibrio parahaemolyticus and Aeromonas hydrophila, the expression of SjTNFα in liver and gill were both upregulated with time, and the highest expression appeared at 24 h and 8 h in liver for different infection, and at 4 h in gill consistently. Cell localization showed that SjTNFα distributed on membrane of HEK293 cells because it was a type II soluble transmembrane protein. When HEK293 cells were stimulated with LPS of different concentrations, the NF-κB pathway was activated in the nucleus and the corresponding mRNA was transferred through the intracellular signal transduction pathway, resulting in the synthesis and release of TNFα, which made the expression of SjTNFα was up-regulated obviously. These findings showed that SjTNFα might play an essential role in the defense of S. japonica against bacteria challenge, which contributed to the understanding of the intrinsic immune signaling pathway of Cephalopoda and the further study of host-pathogen interactions.


Asunto(s)
Decapodiformes , Factor de Necrosis Tumoral alfa , Femenino , Animales , Humanos , Factor de Necrosis Tumoral alfa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Filogenia , Células HEK293 , Decapodiformes/genética , Clonación Molecular , Regulación de la Expresión Génica
6.
Mar Drugs ; 21(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233469

RESUMEN

Marine organisms live in harsh marine habitats, causing them to have significantly different and more diverse proteins than those of terrestrial organisms [...].


Asunto(s)
Organismos Acuáticos , Péptidos , Organismos Acuáticos/química , Péptidos/farmacología , Péptidos/química
7.
Mar Drugs ; 21(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36827146

RESUMEN

The aim of this study was to investigate the protective function and mechanism of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from skipjack tuna cardiac arterial bulbs on skin photoaging using UVB-irradiated HaCaT cell model. The present results indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) had significant cytoprotective effect on UVB-irradiated HaCaT cells (p < 0.001). Hoechst 33342 staining showed that apoptosis of UV-irradiated HaCaT cells could be significantly reduced by the treatment of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM); JC-1 staining showed that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could protect HaCaT cells from apoptosis by restoring mitochondrial membrane potential (MMP); Furthermore, TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could significantly down-regulate the ratio of Bax/Bcl-2 and reduce the expression level of the apoptosis-executing protein Caspase-3 by decreasing the expression of protein Caspase-8 and Caspase-9 (p < 0.05). The action mechanism indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could up-regulate the expression levels of Nrf2, NQO1 and HO-1 (p < 0.05), which further increased the activity of downstream proteases (SOD, CAT and GSH-Px), and scavenged reactive oxygen species (ROS) and decreased the intracellular levels of malondialdehyde (MDA). In addition, molecular docking indicated that TCP3 (PKK) and TCP6 (YEGGD) could competitively inhibit the Nrf2 binding site because they can occupy the connection site of Nrf2 by binding to the Kelch domain of Keap1 protein. TCP9 (GPGLM) was inferred to be non-competitive inhibition because it could not bind to the active site of the Kelch domain of Keap1 protein. In summary, the antioxidant peptides TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from cardiac arterial bulbs of skipjack tuna can effectively protect HaCaT cells from UVB-irradiated damage and can be used in the development of healthy and cosmetic products to treat diseases caused by UV radiation.


Asunto(s)
Antioxidantes , Queratinocitos , Animales , Humanos , Antioxidantes/farmacología , Células HaCaT , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Atún/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Rayos Ultravioleta
8.
Mar Drugs ; 21(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37888451

RESUMEN

The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.


Asunto(s)
Colágeno , Peptidil-Dipeptidasa A , Animales , Simulación del Acoplamiento Molecular , Colágeno/química , Peces/metabolismo , Péptidos/farmacología , Péptidos/química , Ácidos/química , Angiotensinas
9.
Mar Drugs ; 21(11)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37999403

RESUMEN

Antarctic krill (Euphausia superba) is the world's largest resource of animal proteins and is thought to be a high-quality resource for future marine healthy foods and functional products. Therefore, Antarctic krill was degreased and separately hydrolyzed using flavourzyme, pepsin, papain, and alcalase. Protein hydrolysate (AKH) of Antarctic krill prepared by trypsin showed the highest Ca-chelating rate under the optimized chelating conditions: a pH of 8.0, reaction time of 50 min, temperature of 50 °C, and material/calcium ratio of 1:15. Subsequently, fourteen Ca-chelating peptides were isolated from APK by ultrafiltration and a series of chromatographic methods and identified as AK, EAR, AEA, VERG, VAS, GPK, SP, GPKG, APRGH, GVPG, LEPGP, LEKGA, FPPGR, and GEPG with molecular weights of 217.27, 374.40, 289.29, 459.50, 275.30, 300.36, 202.21, 357.41, 536.59, 328.37, 511.58, 516.60, 572.66, and 358.35 Da, respectively. Among fourteen Ca-chelating peptides, VERG presented the highest Ca-chelating ability. Ultraviolet spectrum (UV), Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM) analysis indicated that the VERG-Ca chelate had a dense granular structure because the N-H, C=O and -COOH groups of VERG combined with Ca2+. Moreover, the VERG-Ca chelate is stable in gastrointestinal digestion and can significantly improve Ca transport in Caco-2 cell monolayer experiments, but phytate could significantly reduce the absorption of Ca derived from the VERG-Ca chelate. Therefore, Ca-chelating peptides from protein hydrolysate of Antarctic krill possess the potential to serve as a Ca supplement in developing healthy foods.


Asunto(s)
Euphausiacea , Hidrolisados de Proteína , Animales , Humanos , Hidrolisados de Proteína/química , Euphausiacea/química , Calcio , Células CACO-2 , Péptidos/química , Regiones Antárticas
10.
Mar Drugs ; 21(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37367685

RESUMEN

In this study, we investigate the ameliorating functions of QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) from monkfish swim bladders on an FFA-induced NAFLD model of HepG2 cells. The lipid-lowering mechanisms revealed that these five oligopeptides can up-regulate the expression of phospho-AMP-activated protein kinase (p-AMPK) proteins to inhibit the expression of the sterol regulatory element binding protein-1c (SREBP-1c) proteins on increasing lipid synthesis and up-regulating the expression of the PPAP-α and CPT-1 proteins on promoting the ß-oxidation of fatty acids. Moreover, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) can significantly inhibit reactive oxygen species' (ROS) production, promote the activities of intracellular antioxidases (superoxide dismutase, SOD; glutathione peroxidase, GSH-PX; and catalase, CAT) and bring down the content of malondialdehyde (MDA) derived from lipid peroxidation. Further investigations revealed that the regulation of these five oligopeptides on oxidative stress was achieved through activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to raise the expression levels of the heme oxygenase 1 (HO-1) protein and downstream antioxidant proteases. Therefore, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) could serve as candidate ingredients to develop functional products for treating NAFLD.


Asunto(s)
Antioxidantes , Enfermedad del Hígado Graso no Alcohólico , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Estrés Oxidativo , Ácidos Grasos , Péptidos/metabolismo
11.
Mar Drugs ; 21(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36976218

RESUMEN

In the study, papain was chosen from five proteases to hydrolyze proteins of monkfish swim bladders for effectively utilizing monkfish (Lophius litulon) processing byproducts, and the hydrolysis conditions of papain were optimized as hydrolysis temperature of 65 °C, pH 7.5, enzyme dose 2.5% and time 5 h using single-factor and orthogonal experiments. Eighteen peptides were purified from the swim bladder hydrolysate of monkfish by ultrafiltration and gel permeation chromatography methods and identified as YDYD, QDYD, AGPAS, GPGPHGPSGP, GPK, HRE, GRW, ARW, GPTE, DDGGK, IGPAS, AKPAT, YPAGP, DPT, FPGPT, GPGPT, GPT and DPAGP, respectively. Among eighteen peptides, GRW and ARW showed significant DPPH· scavenging activities with EC50 values of 1.053 ± 0.003 and 0.773 ± 0.003 mg/mL, respectively; YDYD, QDYD, GRW, ARW and YPAGP revealed significantly HO· scavenging activities with EC50 values of 0.150 ± 0.060, 0.177 ± 0.035, 0.201 ± 0.013, 0.183 ± 0.0016 and 0.190 ± 0.010 mg/mL, respectively; YDYD, QDYD, ARW, DDGGK and YPAGP have significantly O2-· scavenging capability with EC50 values of 0.126 ± 0.0005, 0.112 ± 0.0028, 0.127 ± 0.0002, 0.128 ± 0.0018 and 0.107 ± 0.0002 mg/mL, respectively; and YDYD, QDYD and YPAGP showed strong ABTS+· scavenging ability with EC50 values of 3.197 ± 0.036, 2.337 ± 0.016 and 3.839 ± 0.102 mg/mL, respectively. YDYD, ARW and DDGGK displayed the remarkable ability of lipid peroxidation inhibition and Ferric-reducing antioxidant properties. Moreover, YDYD and ARW can protect Plasmid DNA and HepG2 cells against H2O2-induced oxidative stress. Furthermore, eighteen isolated peptides had high stability under temperatures ranging from 25-100 °C; YDYD, QDYD, GRW and ARW were more sensitive to alkali treatment, but DDGGK and YPAGP were more sensitive to acid treatment; and YDYD showed strong stability treated with simulated GI digestion. Therefore, the prepared antioxidant peptides, especially YDYD, QDYD, GRW, ARW, DDGGK and YPAGP from monkfish swim bladders could serve as functional components applied in health-promoting products because of their high-antioxidant functions.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Animales , Antioxidantes/química , Papaína , Péptidos/química , Peces/metabolismo , Hidrolisados de Proteína/química
12.
Fish Shellfish Immunol ; 124: 380-390, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35477097

RESUMEN

Myeloid differentiation factor 88 (MyD88), composed of an N-terminal death domain and a C-terminal Toll/interleukin (IL)-IR homology domain, is a key connector protein in the TLR signal transduction pathway. In this study a novel isoform of MyD88 in Nibea albiflora (named as NaMyD88) was identified and functionally characterized (GenBank accession no. MN384261.1). Its complete cDNA sequence was 1672 bp and contained an open reading frame of 879 bp encoding 292 amino acid residues, which was similar to its teleost fish counterparts in the length. The theoretical molecular mass was 33.63 kDa and the isoelectric point was 5.24. BLASTp analysis suggested that the deduced amino acids sequence of NaMyD88 shared high identity to the known MyD88, for instance, 94.77% identity with Collichthys lucidus. Sequence analysis showed that NaMyD88 protein was consistent with MyD88 protein of other species at three conserved domains, N-terminal DD, short middle domain and C-terminal TIR, and the TIR domain contained three highly conserved motifs: Box1, Box2, and Box3. NaMyD88 and red fluorescent protein (Dsred) were fused and expressed in the cytoplasm of the epithelioma papulosum cyprini (EPC cells). The NaTLR9-TIR-EGFP fusion protein, which was obtained in our previous studies, showed green fluorescence and mainly distributed in the cytoplasm. After co-transfection, NaMyD88-Dsred and NaTLR9-TIR-EGFP obviously overlapped and displayed orange-yellow color. The results showed that the homologous MyD88-Dsred could interact with NaTLR9-TIR-EGFP. Based on this result pcMV-NaMyD88-TIR-Myc plasmids and the pcDNA3.1-NaTLR9-TIR-flag were constructed and co-transfected into 293T cells for the immunoprecipitation test. According to Western blot, the protein eluted by Flag-beads could be detected by anti-Flag-tag antibody and anti-Myc tag antibody respectively, while the protein without NaTLR9-TIR could not be found, which further proved that TLR and MyD88 could interact each other. The prokaryotic plasmid of MyD88-TIR domain was constructed, expressed in BL21 (DE3) and purified by Ni-NAT super flow resin conforming to the expected molecular weight of 27 kDa with the corresponding active sites for its conferring protein-protein interaction functions. Real-time fluorescence quantitative PCR showed that NaMyD88 could be expressed in intestine, stomach, liver, kidney, gill, heart and spleen, with the highest in the kidney, and it was up-regulated after being infected with Polyinosinic:polycytidylic acid - Poly (I:C) and Pseudomonas plecoglossicida, which showed that NaMyD88 was involved in the immune response of N.albiflora. These data afforded a basis for understanding the role of NaMyD88 in the TLR signaling pathway of N.albiflora.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Perciformes , Secuencia de Aminoácidos , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Perciformes/genética , Filogenia , Poli I-C
13.
Mol Biol Rep ; 49(7): 6385-6394, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35503491

RESUMEN

BACKGROUND: Neuropeptide FF (NPFF), an octapeptide of the RFamide-related peptides (FaRPs), is involved in regulatory function in various biological processes. The regulatory role of NPFF in the immune and inflammatory response was currently being revealed. METHODS: Neuropeptide FF-related gene (termed LpNPFF) and its two receptors, NPFF receptor 1 (LpNPFFR1) and NPFF receptor 2 (LpNPFFR2) were identified by PCR and Semi-quantitative RT-PCR assay. Effect of LpNPFF on the production of nitric oxide (NO) in macrophage RAW264.7 cell was divided into PBS group, lipopolysaccharide (LPS) group, LPS treated with LpNPFF group, and LPS treated with LpNPFF and receptor antagonist RF9 group. Then specimens were measured by color reaction at 570 nm absorbance value. RESULTS: Sequence analysis showed that LpNPFF cDNA consists of 835 nucleotides with a 5'- untranslated region (UTR) of 150 base pair (bp), an open reading frame (ORF) of 384 bp and a 3'-UTR of 300 bp (Accession No. MT012894). The ORF encodes 127 amino acid (aa) residues with a hydrophobic signal peptide at N-terminus and two presumptive peptides with -PQRFa structure, LpNPFF (1) and LpNPFF (2). LpNPFFR1 and LpNPFFR2 encode 427 and 444 aa residues respectively, which both have seven hydrophobic TMDs and identified as G protein coupled receptors (GPCRs). Results of tissue distribution showed that LpNPFF and receptors were highly expressed in the brain and gonad. Furtherly, in vitro assay found LpNPFF could inhibit NO production in RAW 264.7 macrophages under inflammatory stress with LPS, while its receptor antagonist RF9 caused the evoke of NO generation. CONCLUSIONS: These results contribute to the further study of neuropeptide evolution in marine organisms, and also provide a new research idea for exploring the related functions of NPFF gene.


Asunto(s)
Lipopolisacáridos , Receptores de Neuropéptido , Animales , Antiinflamatorios , Lipopolisacáridos/farmacología , Óxido Nítrico , Oligopéptidos/farmacología , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo
14.
Mar Drugs ; 20(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35621976

RESUMEN

For making full use of aquatic by-products to produce high value-added products, Siberian sturgeon (Acipenser baerii) cartilages were degreased, mineralized, and separately hydrolyzed by five kinds of proteases. The collagen hydrolysate (SCH) generated by Alcalase showed the strongest 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) and hydroxide radical (HO·) scavenging activity. Subsequently, thirteen antioxidant peptides (SCP1-SCP3) were isolated from SCH, and they were identified as GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG, PSVSLT, IELFPGLP, LRGEAGL, and RGEPGL with molecular weights of 574.55, 615.60, 583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82, and 627.70 Da, respectively. GEYGFE, PSVSLT, and IELFPGLP showed the highest scavenging activity on DPPH· (EC50: 1.27, 1.05, and 1.38 mg/mL, respectively) and HO· (EC50: 1.16, 0.97, and 1.63 mg/mL, respectively), inhibiting capability of lipid peroxidation, and protective functions on H2O2-damaged plasmid DNA. More importantly, GEYGFE, PSVSLT, and IELFPGLP displayed significant cytoprotection on HUVECs against H2O2 injury by regulating the endogenous antioxidant enzymes of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Therefore, the research provided better technical assistance for a higher-value utilization of Siberian sturgeon cartilages and the thirteen isolated peptides-especially GEYGFE, PSVSLT, and IELFPGLP-which may serve as antioxidant additives for generating health-prone products to treat chronic diseases caused by oxidative stress.


Asunto(s)
Antioxidantes , Citoprotección , Animales , Cartílago , Colágeno , Peces , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/farmacología , Péptidos/química , Péptidos/farmacología
15.
Mar Drugs ; 20(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35323475

RESUMEN

To prepare bioactive peptides with high angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) activity, Alcalase was selected from five kinds of protease for hydrolyzing Skipjack tuna (Katsuwonus pelamis) muscle, and its best hydrolysis conditions were optimized using single factor and response surface experiments. Then, the high ACEi protein hydrolysate (TMPH) of skipjack tuna muscle was prepared using Alcalase under the optimum conditions of enzyme dose 2.3%, enzymolysis temperature 56.2 °C, and pH 9.4, and its ACEi activity reached 72.71% at 1.0 mg/mL. Subsequently, six novel ACEi peptides were prepared from TMPH using ultrafiltration and chromatography methods and were identified as Ser-Pro (SP), Val-Asp-Arg-Tyr-Phe (VDRYF), Val-His-Gly-Val-Val (VHGVV), Tyr-Glu (YE), Phe-Glu-Met (FEM), and Phe-Trp-Arg-Val (FWRV), with molecular weights of 202.3, 698.9, 509.7, 310.4, 425.6, and 606.8 Da, respectively. SP and VDRYF displayed noticeable ACEi activity, with IC50 values of 0.06 ± 0.01 and 0.28 ± 0.03 mg/mL, respectively. Molecular docking analysis illustrated that the high ACEi activity of SP and VDRYF was attributed to effective interaction with the active sites/pockets of ACE by hydrogen bonding, electrostatic force, and hydrophobic interaction. Furthermore, SP and VDRYF could significantly up-regulate nitric oxide (NO) production and down-regulate endothelin-1 (ET-1) secretion in HUVECs after 24 h treatment, but also abolish the negative effect of 0.5 µM norepinephrine (NE) on the generation of NO and ET-1. Therefore, ACEi peptides derived from skipjack tuna (K. pelamis) muscle, especially SP and VDRYF, are beneficial components for functional food against hypertension and cardiovascular diseases.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Músculo Esquelético/química , Péptidos , Atún , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Endotelina-1/metabolismo , Alimentos Funcionales , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hidrólisis , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Hidrolisados de Proteína/química , Subtilisinas/química
16.
Mar Drugs ; 20(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36286450

RESUMEN

Cardiac arterial bulbs of Skipjack tuna (Katsuwonus pelamis) are rich in elastin, and its hydrolysates are high quality raw materials for daily cosmetics. In order to effectively utilizing Skipjack tuna processing byproducts-cardiac arterial bulbs and to prepare peptides with high antioxidant activity, pepsin was selected from six proteases for hydrolyzing proteins, and the best hydrolysis conditions of pepsin were optimized. Using ultrafiltration and chromatographic methods, eleven antioxidant peptides were purified from protein hydrolysate of tuna cardiac arterial bulbs. Four tripeptides (QGD, PKK, GPQ and GLN) were identified as well as seven pentapeptides (GEQSN, GEEGD, YEGGD, GEGER, GEGQR, GPGLM and GDRGD). Three out of them, namely the tripeptide PKK and the pentapeptides YEGGD and GPGLM exhibited the highest radical scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and superoxide anion assays. They also showed to protect plasmid DNA and HepG2 cells against H2O2-induced oxidative stress. Furthermore, they exhibited high stability under temperature ranged from 20-100 °C, pH values ranged from 3-11, and they simulated gastrointestinal digestion for 240 min. These results suggest that the prepared eleven antioxidant peptides from cardiac arterial bulbs, especially the three peptides PKK, YEGGD, and GPGLM, could serve as promising candidates in health-promoting products due to their high antioxidant activity and their stability.


Asunto(s)
Antioxidantes , Hidrolisados de Proteína , Animales , Antioxidantes/química , Hidrolisados de Proteína/química , Atún/metabolismo , Elastina , Superóxidos/metabolismo , Peroxidación de Lípido , Pepsina A , Peróxido de Hidrógeno/metabolismo , Péptidos/química , Péptido Hidrolasas/metabolismo , Ácidos Sulfónicos , Concentración de Iones de Hidrógeno , Digestión , ADN/metabolismo
17.
Fish Shellfish Immunol ; 118: 321-332, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34555530

RESUMEN

Toll-like receptors (TLRs) are an important class of molecules involved in non-specific immunity, and they are also the bridge connecting between non-specific immunity and specific immunity. As a vital member of TLR family TLR9 can be activated by bacterial DNA and induce the production of inflammatory cytokines. In this study, a full length of TLR9 homologue of 3677 bp in Nibea albiflora (named as NaTLR9, GenBank accession no: MN125017.1) was characterized, and its ORF was 3180 bp encoding 1059 amino acid residues with a calculated molecular weight of 121.334 kDa (pI = 6.29). Several leucine-rich repeated sequences (LRR domain) and conservative TIR domain were found in NaTLR9, which was mainly expressed in dendritic cells and macrophages. The phylogenetic and synteny analysis further revealed high sequence identity of NaTLR9 with its counterparts of other teleost, confirming their correct nomenclature and conservative during evolution as an important pattern recognition receptor. The NaTLR9-TIR-pEGFP-N1 fusion protein showed green fluorescence and mainly distributed in the cytoplasm. After co-transfection of NaTLR9-TIR-pEGFP-N1 and NaMyD88-pDsRED-Monomer-N1, green fluorescence obviously overlapped with red and changed into yellowish-green, which suggested that there might be the interaction between homologous NaTLR9-TIR and MyD88. Based on this result the pCDNA3.1-NaTLR9-TIR-flag and pcMV-NaMyD88-TIR-Myc plasmids were co-transfected into 293T cells for the immunoprecipitation test. According to Western blot, TLR9 and MyD88 protein could interact with each other. Furthermore, NaTLR9 was ubiquitously expressed in all the investigated tissues, most abundantly in head kidney, followed by stomach, spleen, liver and gill, but lower in muscle. The vitro immune stimulation experiments revealed that Pseudomonas plecoglossicida and polyinosinic-polycytidylic acid [Poly (I:C)] induced higher levels of NaTLR9 mRNA expression with the peaks of 9.52 times at 2 h and 39.91 times at 24 h compared with the control group respectively. The functional domains (LRRs and TIR, named NaTLR9-TIR and NaTLR9-LRR respectively) of NaTLR9 were expressed and purified, the recombinant proteins both could bind three kinds of typical aquatic pathogenic bacteria (Vibrio. parahaemolyticus, Vibrio alginolyticus, and Vibrio harveyi), which showed that NaTLR9 could couple to bacteria by its function domains. The aforementioned results indicated that NaTLR9 played a significant role in the defense against pathogenic bacteria infection in innate immune response of sciaenidae fish, which may provide some further understandings of the regulatory mechanisms in the teleostean innate immune system.


Asunto(s)
Proteínas de Peces , Perciformes , Vibrio parahaemolyticus , Secuencia de Aminoácidos , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata/genética , Perciformes/genética , Perciformes/metabolismo , Filogenia , Poli I-C , Receptor Toll-Like 9/genética
18.
Mar Drugs ; 19(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204535

RESUMEN

For utilizing the largest source of marine proteins, Antarctic krill (Euphausia superba) proteins were defatted and hydrolyzed separately using pepsin, alcalase, papain, trypsin, and netrase, and alcalase hydrolysate (EPAH) showed the highest DPPH radical (DPPH·) and hydroxyl radical (HO·) scavenging activity among five hydrolysates. Using ultrafiltration and chromatography methods, fifteen antioxidant peptides were purified from EPAH and identified as Asn-Gln-Met (NQM), Trp-Phe-Pro-Met (WFPM), Gln-Asn-Pro-Thr (QNPT), Tyr-Met-Asn-Phe (YMNF), Ser-Gly-Pro-Ala (SGPA), Ser-Leu-Pro-Tyr (SLPY), Gln-Tyr-Pro-Pro-Met-Gln-Tyr (QYPPMQY), Glu-Tyr-Glu-Ala (EYEA), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-Val (NWDDMRIVAV), Trp-Asp-Asp-Met-Glu-Arg-Leu-Val-Met-Ile (WDDMERLVMI), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWD-DMEPSF), Asn-Gly-Pro-Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ), Ala-Phe-Leu-Trp-Asn (AFLWA), Asn-Val-Pro-Asp-Met (NVPDM), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln (TFPIYDPQ), respectively, using a protein sequencer and ESI/MS. Among fifteen antioxidant peptides, SLPY, QYPPMQY and EYEA showed the highest scavenging activities on DPPH· (EC50 values of 1.18 ± 0.036, 1.547 ± 0.150, and 1.372 ± 0.274 mg/mL, respectively), HO· (EC50 values of 0.826 ± 0.027, 1.022 ± 0.058, and 0.946 ± 0.011 mg/mL, respectively), and superoxide anion radical (EC50 values of 0.789 ± 0.079, 0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively). Moreover, SLPY, QYPPMQY and EYEA showed strong reducing power, protective capability against H2O2-damaged plasmid DNA, and lipid peroxidation inhibition ability. Furthermore, SLPY, QYPPMQY, and EYEA had high stability under temperatures lower than 80 °C, pH values ranged from 6-8, and simulated GI digestion for 180 min. The results showed that fifteen antioxidant peptides from alcalase hydrolysate of Antarctic krill proteins, especially SLPY, QYPPMQY and EYEA, might serve as effective antioxidant agents applied in food and health products.


Asunto(s)
Antioxidantes , Productos Biológicos , Euphausiacea/química , Hidrolisados de Proteína , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Cromatografía , Hidrólisis , Estrés Oxidativo/efectos de los fármacos , Capacidad de Absorbancia de Radicales de Oxígeno , Hidrolisados de Proteína/química , Hidrolisados de Proteína/aislamiento & purificación , Hidrolisados de Proteína/farmacología , Subtilisinas , Ultrafiltración
19.
Fish Shellfish Immunol ; 102: 469-479, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32389741

RESUMEN

Interleukin-1 receptor-associated kinases (IRAKs) play important roles in the innate immune system of TLR (Toll-like receptor) signaling pathway. In this paper, interleukin-1 receptor-associated kinase-b (designated as McIRAK-b) and interleukin-1 receptor-associated kinase-a (named as McIRAK-a) were obtained based on the transcriptome data, the full length of McIRAK-b was 1815 bp and McIRAK-a was 3168bp, encoding 532 and 978 amino acids, respectively. BLASTp analysis and phylogenetic relationship strongly suggested that the deduced amino acid sequence of McIRAK-b had high homology with IRAK-4 and McIRAK-a was similar to IRAK-1 of other mollusks, especially at their function domains. The expressions of McIRAK-b and McIRAK-a were detected in six tissues including adductor muscle, hemocyte, gills, gonad and hepatopancreas, and the highest expressions appeared both in gills. The expressions of McIRAK-b and McIRAK-a in gills were observed with time-dependent manners after bacterial infections. After being challenged with Vibrio alginolyticus, McIRAK-b expressed significantly and got the peak at 8 h (9.47 times compared with the control group), but the peak appeared at 4 h by being infected with Vibrio parahaemolyticus (12.02 times compared with the control group). The highest point of McIRAK-a mRNA appeared at 12 h (5.16 times) after being challenged with V.alginolyticus and 8 h (4.21 times) for V.parahaemolyticus challenge. The results suggested that IRAK-b and IRAK-a might be important in immune signaling pathway of mussels. The kinase functional domain sequences (S_TKc) of McIRAK-b and McIRAK-a expressed in BL21(DE3) and purified by Ni-NAT Superflow resin conforming to the expected molecular weight with many active sites for their conferring protein-protein interaction functions. This study may provide some further understandings of the regulatory mechanisms in the bivalve innate immune system for IRAKs family.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Mytilus/genética , Mytilus/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Quinasas Asociadas a Receptores de Interleucina-1/química , Filogenia , Alineación de Secuencia , Transducción de Señal/inmunología , Vibrio alginolyticus/fisiología , Vibrio parahaemolyticus/fisiología
20.
Mar Drugs ; 18(3)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168851

RESUMEN

Bioactive peptides from fish collagens with antioxidant properties have become a topic of great interest for health, food, and processing/preservation industries. To explore the high-value utilized way of scales produced during the fish processing, collagen hydrolysates of redlip croaker (Pseudosciaena polyactis) scales were prepared using six different proteases, and the hydrolysate (RSCH) prepared using neutrase showed the highest degree of hydrolysis (21.36 ± 1.18%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity (30.97 ± 1.56%) among the six hydrolysates. Subsequently, six antioxidant peptides were purified from RSCH using membrane ultrafiltration and serial chromatography, and their amino acid sequences were identified as DGPEGR, GPEGPMGLE, EGPFGPEG, YGPDGPTG, GFIGPTE, and IGPLGA with molecular masses of 629.61, 885.95, 788.96, 762.75, 733.80, and 526.61 Da, respectively. Among six collagen peptides, GPEGPMGLE, EGPFGPEG, and GFIGPTE exhibited the strongest scavenging activities on DPPH· radical (EC50 0.59, 0.37, and 0.45 mg/mL), hydroxyl radical (EC50 0.45, 0.33, and 0.32 mg/mL), and superoxide anion radical (EC50 0.62, 0.47, and 0.74 mg/mL). GPEGPMGLE, EGPFGPEG, and GFIGPTE showed high inhibiting ability on lipid peroxidation in a linoleic acid model system and protective activities on oxidation-damaged DNA. More importantly, GPEGPMGLE, EGPFGPEG, and GFIGPTE could protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These results suggested that six collagen peptides (RCP1-RCP6), especially GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in nutraceutical and pharmaceutical products.


Asunto(s)
Antioxidantes/farmacología , Colágeno/química , Peróxido de Hidrógeno/farmacología , Péptidos/farmacología , Perciformes , Hidrolisados de Proteína/farmacología , Secuencia de Aminoácidos , Animales , Antioxidantes/química , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Células Hep G2 , Humanos , Peroxidación de Lípido/efectos de los fármacos , Péptidos/química , Hidrolisados de Proteína/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA