Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nucleic Acids Res ; 51(20): 11178-11196, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37850636

RESUMEN

Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.


Asunto(s)
Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina , Hipoxia , Humanos , Genes Supresores de Tumor , N-Metiltransferasa de Histona-Lisina/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
2.
Biochem Biophys Res Commun ; 588: 97-103, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953212

RESUMEN

Apoptosis plays an essential role in maintaining cellular homeostasis and preventing cancer progression. Bcl-xL, an anti-apoptotic protein, is an important modulator of the mitochondrial apoptosis pathway and is a promising target for anticancer therapy. In this study, we identified octenidine as a novel Bcl-xL inhibitor through structural feature-based deep learning and molecular docking from a library of approved drugs. The NMR experiments demonstrated that octenidine binds to the Bcl-2 homology 3 (BH3) domain-binding hydrophobic region that consists of the BH1, BH2, and BH3 domains in Bcl-xL. A structural model of the Bcl-xL/octenidine complex revealed that octenidine binds to Bcl-xL in a similar manner to that of the well-known Bcl-2 family protein antagonist ABT-737. Using the NanoBiT protein-protein interaction system, we confirmed that the interaction between Bcl-xL and Bak-BH3 domains within cells was inhibited by octenidine. Furthermore, octenidine inhibited the proliferation of MCF-7 breast and H1299 lung cancer cells by promoting apoptosis. Taken together, our results shed light on a novel mechanism in which octenidine directly targets anti-apoptotic Bcl-xL to trigger mitochondrial apoptosis in cancer cells.


Asunto(s)
Inteligencia Artificial , Iminas/farmacología , Piridinas/farmacología , Proteína bcl-X/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Iminas/química , Simulación del Acoplamiento Molecular , Neoplasias/patología , Unión Proteica/efectos de los fármacos , Piridinas/química , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/química
3.
Bioorg Chem ; 127: 105923, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35717803

RESUMEN

Molecular glue degraders, such as lenalidomide and pomalidomide, bind to cereblon (CRBN) E3 ligase and subsequently recruit neosubstrate proteins, Ikaros (IKZF1) and Aiolos (IKZF3), for the ubiquitination-proteasomal degradation process. In this study, we explored structure-activity relationship analysis for novel GSPT1 degraders utilizing a benzotriazinone scaffold previously discovered as a novel CRBN binder. In particular, we focused on the position of the ureido group on the benzotriazinone scaffold, substituent effect on the phenylureido group, and methyl substitution on the benzylic position of benzotriazinone. As a result, we identified 34f (TD-522), which exhibits strong anti-proliferative effects in both KG-1 (EC50 = 0.5 nM) and TMD-8 (EC50 = 5.2 nM) cell lines. Compound 34f effectively induced GSPT1 degradation with a DC50 of 0.269 nM and Dmax of >95 % at 10 nM concentration in KG-1 cells. An in vivo xenograft study showed that compound 34f effectively suppressed TMD8-driven tumor growth, suggesting a potential role in the development of novel GSPT1 degraders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Animales , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Lenalidomida/química , Lenalidomida/farmacología , Ratones , Proteolisis , Relación Estructura-Actividad
4.
J Biol Chem ; 293(51): 19546-19558, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30429221

RESUMEN

In response to genotoxic stress, the tumor suppressor protein p73 induces apoptosis and cell cycle arrest. Despite extensive studies on p73-mediated apoptosis, little is known about the cytoplasmic apoptotic function of p73. Here, using H1299 lung cancer cells and diverse biochemical approaches, including colony formation, DNA fragmentation, GST pulldown, and apoptosis assays along with NMR spectroscopy, we show that p73 induces transcription-independent apoptosis via its transactivation domain (TAD) through a mitochondrial pathway and that this apoptosis is mediated by the interaction between p73-TAD and the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-XL or BCL2L1). This binding disrupted an interaction between Bcl-XL and the pro-apoptotic protein BH3-interacting domain death agonist (Bid). In particular, we found that a 16-mer p73-TAD peptide motif (p73-TAD16) mediates transcription-independent apoptosis, accompanied by cytochrome c release from the mitochondria, by interacting with Bcl-XL Interestingly, the structure of the Bcl-XL-p73-TAD16 peptide complex revealed a novel mechanism of Bcl-XL recognition by p73-TAD. We observed that the α-helical p73-TAD16 peptide binds to a noncanonical site in Bcl-XL, comprising the BH1, BH2, and BH3 domains in an orientation opposite to those of pro-apoptotic BH3 peptides. Taken together, our results indicate that the cytoplasmic apoptotic function of p73 is mediated through a noncanonical mode of Bcl-XL recognition. This finding sheds light on a critical transcription-independent, p73-mediated mechanism for apoptosis induction, which has potential implications for anticancer therapy.


Asunto(s)
Apoptosis , Citoplasma/metabolismo , Proteína Tumoral p73/metabolismo , Proteína bcl-X/metabolismo , Línea Celular Tumoral , Citoplasma/patología , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Transcripción Genética , Proteína Tumoral p73/química , Proteína bcl-X/genética
5.
J Biol Chem ; 292(28): 11804-11814, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28559278

RESUMEN

MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. For example, miRNAs repress gene expression by recruiting the miRNA-induced silencing complex (miRISC), a ribonucleoprotein complex that contains miRNA-engaged Argonaute (Ago) and the scaffold protein GW182. Recently, ubiquitin-protein ligase E3 component N-recognin 5 (UBR5) has been identified as a component of miRISC. UBR5 directly interacts with GW182 proteins and participates in miRNA silencing by recruiting downstream effectors, such as the translation regulator DEAD-box helicase 6 (DDX6) and transducer of ERBB2,1/2,2 (Tob1/2), to the Ago-GW182 complex. However, the regulation of miRISC-associated UBR5 remains largely elusive. In the present study, we showed that UBR5 down-regulates the levels of TNF receptor-associated factor 3 (TRAF3), a key component of Toll-like receptor signaling, via the miRNA pathway. We further demonstrated that p90 ribosomal S6 kinase (p90RSK) is an upstream regulator of UBR5. p90RSK phosphorylates UBR5 at Thr637, Ser1227, and Ser2483, and this phosphorylation is required for the translational repression of TRAF3 mRNA. Phosphorylated UBR5 co-localized with GW182 and Ago2 in cytoplasmic speckles, which implies that miRISC is affected by phospho-UBR5. Collectively, these results indicated that the p90RSK-UBR5 pathway stimulates miRNA-mediated translational repression of TRAF3. Our work has added another layer to the regulation of miRISC.


Asunto(s)
Autoantígenos/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regiones no Traducidas 3' , Sustitución de Aminoácidos , Animales , Autoantígenos/genética , Células COS , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutación , Fosforilación , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Factor 3 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 3 Asociado a Receptor de TNF/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética
6.
Korean J Physiol Pharmacol ; 22(6): 649-660, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30402025

RESUMEN

Migraine is a neurological disorder characterized by recurrent and disabling severe headaches. Although several anticonvulsant drugs that block voltage-dependent Na+ channels are widely used for migraine, far less is known about the therapeutic actions of carbamazepine on migraine. In the present study, therefore, we characterized the effects of carbamazepine on tetrodotoxin-resistant (TTX-R) Na+ channels in acutely isolated rat dural afferent neurons, which were identified by the fluorescent dye DiI. The TTX-R Na+ currents were measured in medium-sized DiIpositive neurons using the whole-cell patch clamp technique in the voltage-clamp mode. While carbamazepine had little effect on the peak amplitude of transient Na+ currents, it strongly inhibited steady-state currents of transient as well as persistent Na+ currents in a concentration-dependent manner. Carbamazepine had only minor effects on the voltage-activation relationship, the voltage-inactivation relationship, and the use-dependent inhibition of TTX-R Na+ channels. However, carbamazepine changed the inactivation kinetics of TTX-R Na+ channels, significantly accelerating the development of inactivation and delaying the recovery from inactivation. In the current-clamp mode, carbamazepine decreased the number of action potentials without changing the action potential threshold. Given that the sensitization of dural afferent neurons by inflammatory mediators triggers acute migraine headaches and that inflammatory mediators potentiate TTX-R Na+ currents, the present results suggest that carbamazepine may be useful for the treatment of migraine headaches.

7.
Korean J Physiol Pharmacol ; 21(2): 215-223, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28280415

RESUMEN

The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K+ and Ca2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K+ currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K+ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs+ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

8.
Eur J Pharmacol ; 961: 176218, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37992887

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve various symptoms such as headache, arthralgia, and dental pain. While the primary mechanism of NSAID-based pain relief is the inhibition of cyclooxygenase-2, several NSAIDs also modulate other molecular targets related to nociceptive transmission such as voltage-gated Na+ channels. In the present study, we examined the effects of NSAIDs on persistent Na+ current (INaP) mediated by tetrodotoxin-resistant (TTX-R) Na+ channels in small-to medium-sized trigeminal ganglion neurons using a whole-cell patch-clamp technique. At clinically relevant concentrations, all propionic acid derivatives tested (ibuprofen, naproxen, fenoprofen, and flurbiprofen) preferentially inhibited the TTX-R INaP. The inhibition was more potent at acidic extracellular pH (pH 6.5) than at normal pH (pH 7.4). Other NSAIDs, such as ketorolac, piroxicam, and aspirin, had a negligible effect on the TTX-R INaP. Ibuprofen both accelerated the onset of inactivation and retarded the recovery from inactivation of TTX-R Na+ channels at acidic extracellular pH. However, all NSAIDs tested in this study had minor effects on voltage-gated K+ currents, as well as hyperpolarization-activated and cyclic nucleotide-gated cation currents, at both acidic and normal extracellular pH. Under current-clamp conditions, ibuprofen decreased the number of action potentials elicited by depolarizing current stimuli at acidic (pH 6.5) extracellular pH. Considering that extracellular pH falls as low as 5.5 in inflamed tissues, TTX-R INaP inhibition could be a mechanism by which ibuprofen and propionic acid derivative NSAIDs modulate inflammatory pain.


Asunto(s)
Ibuprofeno , Ganglio del Trigémino , Ratas , Animales , Tetrodotoxina/farmacología , Ibuprofeno/farmacología , Canales de Sodio , Bloqueadores de los Canales de Sodio/farmacología , Ratas Sprague-Dawley , Potenciales de la Membrana , Antiinflamatorios no Esteroideos/farmacología , Neuronas , Dolor , Ácidos , Concentración de Iones de Hidrógeno
9.
Genes Genomics ; 45(3): 285-293, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36662391

RESUMEN

BACKGROUND: Elevated expression of Dickkopf-1 (DKK1) is frequently observed in hepatocellular carcinoma (HCC) patients with poor clinical outcomes. Several reports indicating the functional involvement of DKK1 in HCC progression have suggested DKK1 as a promising therapeutic target for HCC. OBJECTIVE: In this study, to develop an efficient way to target DKK1, we assessed the effect of CDK9 inhibitors on DKK1 expression linked to metastatic movement of HCC. METHODS: The expression of DKK1 in CDK9 inhibitor-treated HCC cells was measured by western blot, ELISA and quantitative real-time reverse transcription PCR. Wound healing assay, migration assay, invasion assay and western blot were examined to evaluate the functional role of DKK1 in CDK9 inhibitors-treated HCC. RESULTS: Inactivation of CDK9 either by a catalytic inhibitor being clinically evaluated or by a specific CDK9 protein degrader largely downregulated DKK1 expression at the transcript and protein levels. In addition, CDK9 inhibitors suppressed the migration and invasion of HCC cells. We observed that ectopic high expression of DKK1 at least partially reversed the defects in metastatic movement of HCC cells mediated by CDK9 inhibitors. We further discovered that the DKK1-nuclear ß-catenin axis associated with the metastatic potential of HCC cells was impaired by CDK9 inhibitors. CONCLUSION: Taken together, our findings suggest that CDK9 inhibitors are potent tools to target DKK1, which can suppress the metastatic progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Movimiento Celular , Péptidos y Proteínas de Señalización Intercelular , Quinasa 9 Dependiente de la Ciclina
10.
Eur J Med Chem ; 245(Pt 2): 114910, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36410083

RESUMEN

Inhibitors of apoptosis proteins (IAPs), defined by the presence of baculovirus IAP repeat (BIR) protein domain, are critical regulators of cell survival and cell death processes. Cellular IAP 1/2 (cIAP1/2) and X-linked IAPs (XIAPs) regulate the innate immune signaling pathway through their E3 ubiquitin ligase activity. Peptidomimetics or small-molecule IAP antagonists have been developed to treat various diseases, such as cancer, infection, and inflammation. In this study, we synthesized and characterized IAP-cereblon (CRBN) heterodimerizing proteolysis-targeting chimera (PROTAC), which induces the degradation of cIAP1/2 and XIAP but not CRBN. We demonstrated that this PROTAC inhibits tumor necrosis factor alpha (TNFα)-induced innate immune response and cancer cell migration and invasion, leading to apoptotic cell death. Our study is the first to demonstrate that both cIAPs and XIAP are degradable when applied to the PROTAC strategy.


Asunto(s)
Apoptosis , Transducción de Señal , Muerte Celular , Supervivencia Celular , Proteolisis
11.
Sci Rep ; 13(1): 16763, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798384

RESUMEN

The CRISPR-Cas9 system is a widely used gene-editing tool, offering unprecedented opportunities for treating various diseases. Controlling Cas9/dCas9 activity at specific location and time to avoid undesirable effects is very important. Here, we report a conditionally active CRISPR-Cas9 system that regulates target gene expression upon sensing cellular environmental change. We conjugated the oxygen-sensing transcription activation domain (TAD) of hypoxia-inducing factor (HIF-1α) with the Cas9/dCas9 protein. The Cas9-TAD conjugate significantly increased endogenous target gene cleavage under hypoxic conditions compared with that under normoxic conditions, whereas the dCas9-TAD conjugate upregulated endogenous gene transcription. Furthermore, the conjugate system effectively downregulated the expression of SNAIL, an essential gene in cancer metastasis, and upregulated the expression of the tumour-related genes HNF4 and NEUROD1 under hypoxic conditions. Since hypoxia is closely associated with cancer, the hypoxia-dependent Cas9/dCas9 system is a novel addition to the molecular tool kit that functions in response to cellular signals and has potential application for gene therapeutics.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica , Proteína 9 Asociada a CRISPR/genética , Edición Génica , Hipoxia/genética , Neoplasias/genética
12.
Oncol Rep ; 49(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37144504

RESUMEN

Oral squamous cell carcinoma (OSCC) is a tumor with a poor prognosis and a high recurrence rate. Despite its high annual incidence worldwide, appropriate therapeutic strategies have not yet been developed. Consequently, the 5­year survival rate for OSCC is low when advanced stages or recurrence is diagnosed. Forkhead transcriptional factor O1 (FoxO1) is a key mediator for maintaining cellular homeostasis. FoxO1 can function as a tumor suppressor as well as an oncogene depending on the cancer type. Therefore, the precise molecular functions of FoxO1 need to be validated, considering intracellular factors and the extracellular environment. To the best of our knowledge, however, the roles of FoxO1 in OSCC have not yet been defined. The present study examined FoxO1 levels under pathological conditions (oral lichen planus and oral cancer) and selected an appropriate OSCC cell line (YD­9). Crispr/Cas9 was used to generate FoxO1­deficient YD­9 cells in which the protein levels of phospho ERK and phospho STAT3 were upregulated, promoting cancer proliferation and migration. In addition, FoxO1 reduction increased the levels of the cell proliferation markers phospho H3 (Ser10) and PCNA. FoxO1 loss significantly reduced cellular ROS levels and apoptosis in YD­9 cells. Collectively, the present study demonstrated that FoxO1 exerted an anti­tumor effect by suppressing proliferation and migration/invasion but promoting oxidative stress­linked cell death in YD­9 OSCC cells.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
13.
J Neurochem ; 122(4): 691-701, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22671314

RESUMEN

The effect of icilin, a potent agonist of transient receptor potential ankyrin 1 (TRPA1) and TRPM8, on glycinergic transmission was examined in mechanically isolated rat medullary dorsal horn neurons by use of the conventional whole-cell patch-clamp technique. Icilin increased the frequency of glycinergic spontaneous miniature inhibitory post-synaptic currents (mIPSCs) in a dose-dependent manner. Either allyl isothiocyanate(AITC) or cinnamaldehyde, other TRPA1 agonists, also increased mIPSC frequency, but the extent of facilitation induced by AITC or cinnamaldehyde was less than that induced by icilin. However, menthol, a TRPM8 agonist, had no facilitatory effect on glycinergic mIPSCs. The icilin-induced increase in mIPSC frequency was significantly inhibited by either HC030031, a selective TRPA1 antagonist, or ruthenium red, a non-selective transient receptor potential channel blocker. Icilin failed to increase glycinergic mIPSC frequency in the absence of extracellular Ca(2+), suggesting that the icilin-induced increase in mIPSC frequency is mediated by the Ca(2+) influx from the extracellular space. In contrast, icilin still increased mIPSC frequency either in the Na(+) -free external solution or in the presence of Cd(2+), a general voltage-dependent Ca(2+) channel blocker. The present results suggest that icilin acts on pre-synaptic TRPA1-like ion channels, which are permeable to Ca(2+), to enhance glycinergic transmission onto medullary dorsal horn neurons. The TRPA1-like channel-mediated enhancement of glycinergic transmission in medullary dorsal horn neurons would contribute to the regulation of pain information from the peripheral tissues.


Asunto(s)
Glicina/fisiología , Bulbo Raquídeo/fisiología , Células del Asta Posterior/fisiología , Pirimidinonas/farmacología , Transmisión Sináptica/fisiología , Canales Catiónicos TRPC/fisiología , Acetanilidas/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Cadmio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Bulbo Raquídeo/efectos de los fármacos , Técnicas de Placa-Clamp , Células del Asta Posterior/efectos de los fármacos , Purinas/farmacología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Transmisión Sináptica/efectos de los fármacos , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/agonistas , Canales Catiónicos TRPC/antagonistas & inhibidores
14.
Neurosci Lett ; 756: 135951, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33984431

RESUMEN

Sevoflurane, which is preferentially used as a day-case anesthetic based on its low blood solubility, acts on the central nervous system and exerts analgesic effects. However, it still remains unknown whether sevoflurane affects the excitability of nociceptive sensory neurons. Therefore, we conducted this study to examine the effects of sevoflurane on the excitability of small-sized dorsal root ganglion (DRG) neurons of rats using the whole-cell patch-clamp technique. In a voltage-clamp condition, sevoflurane elicited the membrane current in a concentration-dependent manner, in which the reversal potential was similar to the equilibrium potential of K+. In a current-clamp condition, sevoflurane directly depolarized the membrane potentials in a concentration-dependent manner. Moreover, at a clinically relevant concentration, sevoflurane decreased the threshold for action potential generation. These findings suggest that sevoflurane acts on the leak K+ channels to increase the excitability of DRG neurons. Sevoflurane increased the half-width of single action potentials, which resulted from the inhibition of voltage-gated K+ currents, including the fast inactivating A-type and non-inactivating delayed rectifier K+ currents. Our study indicates that sevoflurane could exhibit pronociceptive effects on nociceptive sensory neurons by inhibiting K+ conductances.


Asunto(s)
Anestésicos por Inhalación/farmacología , Ganglios Espinales/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Nociceptores/efectos de los fármacos , Sevoflurano/farmacología , Animales , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
15.
Brain Res ; 1750: 147149, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035497

RESUMEN

Menthol, which acts as an agonist for transient receptor potential melastatin 8 (TRPM8), has complex effects on nociceptive transmission, including pain relief and hyperalgesia. Here, we addressed the effects of menthol on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs, respectively) in medullary dorsal horn neurons, using a whole-cell patch-clamp technique. Menthol significantly increased sEPSC frequency, in a concentration-dependent manner, without affecting current amplitudes. The menthol-induced increase in sEPSC frequency could be completely blocked by AMTB, a TRPM8 antagonist, but was not blocked by HC-030031, a transient receptor potential ankyrin 1 (TRPA1) antagonist. Menthol still increased sEPSC frequency in the presence of Cd2+, a general voltage-gated Ca2+ channel blocker, suggesting that voltage-gated Ca2+ channels are not involved in the menthol-induced increase in sEPSC frequency. However, menthol failed to increase sEPSC frequency in the absence of extracellular Ca2+, suggesting that TRPM8 on primary afferent terminals is Ca2+ permeable. On the other hand, menthol also increased sIPSC frequency, without affecting current amplitudes. The menthol-induced increase in sIPSC frequency could be completely blocked by either AMTB or CNQX, an AMPA/KA receptor antagonist, suggesting that the indirect increase in excitability of inhibitory interneurons may lead to the facilitation of spontaneous GABA and/or glycine release. The present results suggested that menthol exerts analgesic effects, via the enhancement of inhibitory synaptic transmission, through central feed-forward neural circuits within the medullary dorsal horn region.


Asunto(s)
Mentol/farmacología , Células del Asta Posterior/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Mentol/metabolismo , Técnicas de Placa-Clamp , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/metabolismo , Transmisión Sináptica/fisiología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPC/metabolismo
16.
Neuroreport ; 32(17): 1335-1340, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34718245

RESUMEN

OBJECTIVE: Volatile anesthetics are widely used for general anesthesia during surgical operations. Voltage-gated Na+ channels expressed in central neurons are major targets for volatile anesthetics; but it is unclear whether these drugs modulate native tetrodotoxin-resistant (TTX-R) Na+ channels, which are involved in the development and maintenance of inflammatory pain. METHODS: In this study, we examined the effects of sevoflurane on TTX-R Na+ currents (INa) in acutely isolated rat dorsal root ganglion neurons, using a whole-cell patch-clamp technique. RESULTS: Sevoflurane slightly potentiated the peak amplitude of transient TTX-R INa but more potently inhibited slow voltage-ramp-induced persistent INa in a concentration-dependent manner. Sevoflurane (0.86 ± 0.02 mM) (1) slightly shifted the steady-state fast inactivation relationship to hyperpolarizing ranges without affecting the voltage-activation relationship, (2) reduced the extent of use-dependent inhibition of Na+ channels, (3) accelerated the onset of inactivation and (4) delayed the recovery from inactivation of TTX-R Na+ channels. Thus, sevoflurane has diverse effects on TTX-R Na+ channels expressed in nociceptive neurons. CONCLUSIONS: The present results suggest that the inhibition of persistent INa and the modulation of the voltage dependence and inactivation might be, at least in part, responsible for the analgesic effects elicited by sevoflurane.


Asunto(s)
Anestésicos por Inhalación/farmacología , Ganglios Espinales/citología , Nociceptores/efectos de los fármacos , Sevoflurano/farmacología , Canales de Sodio/efectos de los fármacos , Animales , Potenciales de la Membrana , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nociceptores/metabolismo , Técnicas de Placa-Clamp , Ratas , Canales de Sodio/metabolismo , Tetrodotoxina , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Sodio Activados por Voltaje/metabolismo
17.
BMB Rep ; 54(5): 272-277, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33407999

RESUMEN

RalBP1 associated EPS domain containing 1 (REPS1) is conserved from Drosophila to humans and implicated in the endocytic system. However, an exact role of REPS1 remains largely unknown. Here, we demonstrated that mitogen activated protein kinase kinase (MEK)-p90 ribosomal S6 Kinase (RSK) signaling pathway directly phosphorylated REPS1 at Ser709 upon stimulation by epidermal growth factor (EGF) and amino acid. While REPS2 is known to be involved in the endocytosis of EGF receptor (EGFR), REPS1 knockout (KO) cells did not show any defect in the endocytosis of EGFR. However, in the REPS1 KO cells and the KO cells reconstituted with a non-phosphorylatable REPS1 (REPS1 S709A), the recycling of transferrin receptor (TfR) was attenuated compared to the cells reconstituted with wild type REPS1. Collectively, we suggested that the phosphorylation of REPS1 at S709 by RSK may have a role of the trafficking of TfR. [BMB Reports 2021; 54(5): 272-277].


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Serina/metabolismo , Células Cultivadas , Humanos , Fosforilación
18.
Pharmaceutics ; 13(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34575486

RESUMEN

Glioblastoma is an actively growing and aggressive brain tumor with a high propensity of recurrence. Although the surgical removal of tumor mass is the primary therapeutic option against glioblastoma, supportive pharmacotherapy is highly essential due to incredibly infiltrative characteristic of glioblastoma. Temozolomide, an FDA-approved alkylating agent, has been used as a first-line standard pharmacological approach, but several evident limitations were repeatedly reported. Despite additional therapeutic options suggested, there are no medications that successfully prevent a recurrence of glioblastoma and increase the five-year survival rate. In this study, we tested the possibility that finasteride has the potential to be developed as an anti-glioblastoma drug. Finasteride, an FDA-approved medication for the treatment of benign prostate hyperplasia and androgenic alopecia, is already known to pass through the blood-brain barrier and possess antiproliferative activity of prostate epithelial cells. We showed that finasteride inhibited the maintenance of glioma stem-like cells and repressed the proliferation of glioblastoma. Mechanistically, finasteride lowered intracellular ROS level by upregulating antioxidant genes, which contributed to inefficient ß-catenin accumulation. Downregulated ß-catenin resulted in the reduction in stemness and cell growth in glioblastoma.

19.
Phytomedicine ; 83: 153483, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33578358

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive tumor residing within the central nervous system, with extremely poor prognosis. Although the cytotoxic effects of ginsenoside F2 (GF2) on GBM were previously suggested, the precise anti-GBM mechanism of GF2 remains unclear. The aim of this study was to explore the anti-cancer molecular mechanism of GF2 toward human GBM. METHODS: GF2-driven cellular toxicity was confirmed in two different GBM cells, U373 and Hs683. To test mitochondrial impairment driven by GF2, we examined the mitochondrial membrane potential, OCR, and ATP production. An intracellular redox imbalance was identified by measuring the relative ratio of reduced glutathione to oxidized glutathione (GSH/GSSG), glutaredoxin (GLRX) mRNA expression, intracellular NAD+ level, and AMPK phosphorylation status. RESULTS: GF2 increased the percentage of cleaved caspase 3-positive cells and γH2AX signal intensities, confirming that GF2 shows the cytotoxicity against GBM. GO enrichment analysis suggested that the mitochondrial function could be negatively influenced by GF2. GF2 reduced the mitochondrial membrane potential, basal mitochondrial respiratory rate, and ATP production capacity. Our results showed that GF2 downregulated the relative GSH/GSSG, intracellular NAD+ level, and GLRX expression, suggesting that GF2 may alter the intracellular redox balance that led to mitochondrial impairment. CONCLUSION: GF2 reduces mitochondrial membrane potential, inhibits cellular oxygen consumption, activates AMPK signaling, and induces cell death. Our study examined the potential vulnerability of mitochondrial activity in GBM, and this may hold therapeutic promise.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ginsenósidos/farmacología , Glioblastoma/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , Glutarredoxinas/genética , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción
20.
Cell Death Differ ; 28(3): 900-914, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33110214

RESUMEN

The mammalian Target of Rapamycin (mTOR) pathway regulates a variety of physiological processes, including cell growth and cancer progression. The regulatory mechanisms of these signals are extremely complex and comprise many feedback loops. Here, we identified the deubiquitinating enzyme ovarian tumor domain-containing protein 5 (OTUD5) as a novel positive regulator of the mTOR complex (mTORC) 1 and 2 signaling pathways. We demonstrated that OTUD5 stabilized ß-transducin repeat-containing protein 1 (ßTrCP1) proteins via its deubiquitinase (DUB) activity, leading to the degradation of Disheveled, Egl-10, and pleckstrin domain-containing mTOR-interacting protein (DEPTOR), which is an inhibitory protein of mTORC1 and 2. We also showed that mTOR directly phosphorylated OTUD5 and activated its DUB activity. RNA sequencing analysis revealed that OTUD5 regulates the downstream gene expression of mTOR. Additionally, OTUD5 depletion elicited several mTOR-related phenotypes such as decreased cell size and increased autophagy in mammalian cells as well as the suppression of a dRheb-induced curled wing phenotype by RNA interference of Duba, a fly ortholog of OTUD5, in Drosophila melanogaster. Furthermore, OTUD5 knockdown inhibited the proliferation of the cancer cell lines with mutations activating mTOR pathway. Our results suggested a positive feedback loop between OTUD5 and mTOR signaling pathway.


Asunto(s)
Proliferación Celular , Endopeptidasas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Transducción de Señal , Animales , Autofagia , Enzimas Desubicuitinizantes/metabolismo , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células MCF-7 , Fosforilación , Interferencia de ARN , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA