Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Curr Issues Mol Biol ; 45(7): 5950-5966, 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37504292

RESUMEN

Saussurea neoserrata Nakai offers a reliable and efficient source of antioxidants that can help alleviate adverse skin reactions triggered by air pollutants. Air pollutants, such as particulate matter (PM), have the ability to infiltrate the skin and contribute to the higher occurrence of cardiovascular, cerebrovascular, and respiratory ailments. Individuals with compromised skin barriers are particularly susceptible to the impact of PM since it can be absorbed more readily through the skin. This study investigated the impact of protocatechuic acid and syringin, obtained from the n-BuOH extract of S. neoserrata Nakai, on the release of PGE2 and PGD2 induced by PM10. Additionally, it examined the gene expression of the synthesis of PGE2 and PGD2 in human keratinocytes. The findings of this research highlight the potential of utilizing safe and efficient plant-derived antioxidants in dermatological and cosmetic applications to mitigate the negative skin reactions caused by exposure to air pollution.

2.
Small ; : e2305148, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635100

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is a serious global threat with surging new variants of concern. Although global vaccinations have slowed the pandemic, their longevity is still unknown. Therefore, new orally administrable antiviral agents are highly demanded. Among various repurposed drugs, niclosamide (NIC) is the most potential one for various viral diseases such as COVID-19, SARS (severe acute respiratory syndrome), MERS (middle east respiratory syndrome), influenza, RSV (respiratory syncytial virus), etc. Since NIC cannot be effectively absorbed, a required plasma concentration for antiviral potency is hard to maintain, thereby restricting its entry into the infected cells. Such a 60-year-old bioavailability challenging issue has been overcome by engineering with MgO and hydroxypropyl methylcellulose (HPMC), forming hydrophilic NIC-MgO-HPMC, with improved intestinal permeability without altering NIC metabolism as confirmed by parallel artificial membrane permeability assay. The inhibitory effect on SARS-CoV-2  replication is confirmed in the Syrian hamster model to reduce lung injury. Clinical studies reveal that the bioavailability of NIC hybrid drug can go 4 times higher than the intact NIC. The phase II clinical trial shows a dose-dependent bioavailability of NIC from hybrid drug  suggesting its potential applicability as a game changer in achieving the much-anticipated endemic phase.

3.
BMC Emerg Med ; 23(1): 15, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765283

RESUMEN

BACKGROUND: Since 2014, Korea has been operating the National Emergency Medical Situation Room (NEMSR) to provide regional emergency departments (EDs) with coordination services for the interhospital transfer of critically ill patients. The present study aimed to describe the NEMSR's experience and interhospital transfer pattern from EDs nationwide, and investigate the factors related to delayed transfers or transfers that could not be arranged by the NEMSR. METHODS: This study was a retrospective cross-sectional analysis of the NEMSR's coordination registry from 2017 to 2019. The demographic and hospital characteristics related to emergency transfers were analyzed with hierarchical logistic models. RESULTS: The NEMSR received a total of 14,003 requests for the arrangement of the interhospital transfers of critically ill patients from 2017 to 2019. Of 10,222 requests included in the analysis, 8297 (81.17%) successful transfers were coordinated by the NEMSR. Transfers were requested mainly due to a shortage of medical staff (59.79%) and ICU beds (30.80%). Delayed transfers were significantly associated with insufficient hospital resources. The larger the bed capacity of the sending hospital, the more difficult it was to coordinate the transfer (odds ratio [OR] for transfer not arranged = 2.04; 95% confidence interval [CI]: 1.48-2.82, ≥ 1000 beds vs. < 300 beds) and the longer the transfer was delayed (OR for delays of more than 44 minutes = 2.08; 95% CI: 1.57-2.76, ≥ 1000 beds vs. < 300 beds). CONCLUSIONS: The operation of the NEMSR has clinical importance in that it could efficiently coordinate interhospital transfers through a protocolized process and resource information system. The coordination role is significant as information technology in emergency care develops while regional gaps in the distribution of medical resources widen.


Asunto(s)
Enfermedad Crítica , Transferencia de Pacientes , Humanos , Estudios Retrospectivos , Estudios Transversales , Enfermedad Crítica/terapia , Servicio de Urgencia en Hospital , República de Corea
4.
Proc Natl Acad Sci U S A ; 116(24): 11664-11672, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31123147

RESUMEN

Implantable devices for on-demand and pulsatile drug delivery have attracted considerable attention; however, many devices in clinical use are embedded with the electronic units and battery inside, hence making them large and heavy for implantation. Therefore, we propose an implantable device with multiple drug reservoirs capped with a stimulus-responsive membrane (SRM) for on-demand and pulsatile drug delivery. The SRM is made of thermosensitive POSS(MEO2MA-co-OEGMA) and photothermal nanoparticles of reduced graphene oxide (rGO), and each of the drug reservoirs is filled with the same amount of human growth hormone (hGH). Therefore, with noninvasive near-infrared (NIR) irradiation from the outside skin, the rGO nanoparticles generate heat to rupture the SRM in the implanted device, which can open a single selected drug reservoir to release hGH. Therefore, the device herein is shown to release hGH reproducibly only at the times of NIR irradiation without drug leakage during no irradiation. When implanted in rats with growth hormone deficiency and irradiated with an NIR light from the outside skin, the device exhibits profiles of hGH and IGF1 plasma concentrations, as well as body weight change, similar to those in animals treated with conventional s.c. hGH injections.


Asunto(s)
Hormona de Crecimiento Humana/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Grafito/química , Humanos , Masculino , Nanopartículas/química , Prótesis e Implantes , Ratas
5.
Sci Technol Adv Mater ; 23(1): 225-274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875329

RESUMEN

Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.

6.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233164

RESUMEN

Clay-based bio-inorganic nanohybrids, such as layered double hydroxides (LDH), have been extensively researched in the various fields of biomedicine, particularly for drug delivery and bio-imaging applications. Recent trends indicate that such two-dimensional LDH can be hybridized with a variety of photo-active biomolecules to selectively achieve anti-cancer benefits through numerous photo/chemotherapies (PCT), including photothermal therapy, photodynamic therapy, and magnetic hyperthermia, a combination of therapies to achieve the best treatment regimen for patients that cannot be treated either by surgery or radiation alone. Among the novel two-dimensional clay-based bio-inorganic nanohybrids, LDH could enhance the photo-stability and drug release controllability of the PCT agents, which would, in turn, improve the overall phototherapeutic performance. This review article highlights the most recent advances in LDH-based two-dimensional clay-bio-inorganic nanohybrids for the aforementioned applications.


Asunto(s)
Hidróxidos , Fotoquimioterapia , Arcilla , Sistemas de Liberación de Medicamentos , Humanos
7.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682716

RESUMEN

Gastric cancer (GC) is one of the most common cancers and a leading cause of cancer deaths around the world. Chemotherapy is one of the most effective treatments for cancer patients, and has remarkably enhanced survival rates. However, it has many side effects. Recently, microRNAs (miRNAs) have been intensively studied as potential biomarkers for cancer diagnosis and treatment monitoring. However, definitive biomarkers in chemotherapy-induced peripheral neuropathy (CIPN) are still lacking. The aim of this study was to identify the factors significant for neurological adverse events in GC patients receiving XELOX (oxaliplatin and capecitabine) chemotherapy. The results show that XELOX chemotherapy induces changes in the expression of hsa-miR-200c-3p, hsa-miR-885-5p, and hsa-miR-378f. Validation by qRT-PCR demonstrated that hsa-miR-378f was significantly downregulated in CIPN. Hsa-miR-378f was identified as showing a statistically significant correlation in GC patients receiving XELOX chemotherapy according to the analysis of differentially expressed (DE) miRNAs. Furthermore, 34 potential target genes were predicted using a web-based database for miRNA target prognostication and functional annotations. The identified genes are related to the peptidyl-serine phosphorylation and regulation of alternative mRNA splicing with enrichment in the gastric cancer, neurotrophin, MAPK, and AMPK signaling pathways. Collectively, these results provide information useful for developing promising strategies for the treatment of XELOX-chemotherapy-induced peripheral neuropathy.


Asunto(s)
Antineoplásicos , MicroARN Circulante , MicroARNs , Enfermedades del Sistema Nervioso Periférico , Neoplasias Gástricas , Antineoplásicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores , Capecitabina/efectos adversos , MicroARN Circulante/genética , Perfilación de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oxaloacetatos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
8.
Molecules ; 27(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234976

RESUMEN

Although nicotinic acid (NA) has several clinical benefits, its potency cannot be fully utilized due to several undesirable side effects, including cutaneous flushing, GIT-associated symptoms, etc. To overcome such issues and improve the NA efficacy, a new inorganic-organic nanohybrids system was rationally designed. For making such a hybrid system, NA was intercalated into LDH through a coprecipitation technique and then coated with Eudragit® S100 to make the final drug delivery system called Eudragit® S100-coated NA-LDH. The as-made drug delivery system not only improved the NA release profile but also exhibited good bio-compatibility as tested on L929 cells. Such an inorganic-organic nanohybrid drug delivery agent is expected to reduce the undesirable side effects associated with NA and hopefully improve the pharmacological effects without inducing any undesirable toxicity.


Asunto(s)
Niacina , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Hidróxidos , Ácidos Polimetacrílicos
9.
Microporous Mesoporous Mater ; 326: 111394, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34483712

RESUMEN

COVID-19 is a rapidly evolving emergency, for which there have been no specific medication found yet. Therefore, it is necessary to find a solution for this ongoing pandemic with the aid of advanced pharmaceutics. What is proposed as a solution is the repurposing of FDA approved drug such as niclosamide (NIC) having multiple pathways to inactivate the SARS-CoV-2, the specific virion that induces COVID-19. However, NIC is hardly soluble in an aqueous solution, thereby poor bioavailability, resulting in low drug efficacy. To overcome such a disadvantage, we propose here an oral formulation based on Tween 60 coated drug delivery system comprised of three different mesoporous silica biomaterials like MCM-41, SBA-15, and geopolymer encapsulated with NIC molecules. According to the release studies under a gastro/intestinal solution, the cumulative NIC release out of NIC-silica nanohybrids was found to be greatly enhanced to ~97% compared to the solubility of intact NIC (~40%) under the same condition. We also confirmed the therapeutically relevant bioavailability for NIC by performing pharmacokinetic (PK) study in rats with NIC-silica oral formulations. In addition, we discussed in detail how the PK parameters could be altered not only by the engineered porous structure and property, but also by interfacial interactions between ion-NIC dipole, NIC-NIC dipoles and/or pore wall-NIC van der Waals in the intra-pores of silica nanoparticles.

10.
Phytother Res ; 35(12): 6918-6931, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34818693

RESUMEN

The present study aimed to determine the antioxidant effect of Citrus unshiu Markovich (CUM) extract in neuronal cell lines under oxidative stress and to investigate the effect of chemotherapy-induced peripheral neuropathy (CIPN) on the nociceptive response in a preclinical mice model. We tested the inhibition of H2 O2 in Neuro2A cells treated with CUM. Experimental animals were treated with oxaliplatin to induce CINP, and then administered oral CUM for 4 weeks in order to observe the effect of CUM. Animals were evaluated weekly for thermal hyperalgesia and digital motor nerve conduction velocity (NCV). Lumbar dorsal root ganglia (DRG) isolated from each animal were evaluated through immunochemical and western blot analysis for nerve damage, inflammatory response, and expression of redox signaling factors. The main mechanisms were determined to be decreased inducible nitric oxide synthase (iNOS) production due to the inhibition of NADPH oxidase 2 (NOX2). To determine the functional role of NOX2 in CINP, we administrated CUM into NOX2-deficient mice with neuropathic pain. Therefore, we suggest that CUM controls the expression levels of inflammatory factors in CINP via NOX2 inactivation. This study demonstrated that a complementary medicine such as CUM might be a potential novel therapeutic agent for the treatment of CINP.


Asunto(s)
Antineoplásicos , Citrus , Hiperalgesia , NADPH Oxidasa 2/antagonistas & inhibidores , Neuralgia , Fármacos Neuroprotectores/farmacología , Extractos Vegetales , Animales , Antineoplásicos/efectos adversos , Citrus/química , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Ratones , Modelos Animales , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Extractos Vegetales/farmacología
11.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884973

RESUMEN

Stimuli-responsive nanoparticles are regarded as an ideal candidate for anticancer drug targeting. We synthesized glutathione (GSH) and magnetic-sensitive nanocomposites for a dual-targeting strategy. To achieve this goal, methoxy poly (ethylene glycol) (MePEG) was grafted to water-soluble chitosan (abbreviated as ChitoPEG). Then doxorubicin (DOX) was conjugated to the backbone of chitosan via disulfide linkage. Iron oxide (IO) magnetic nanoparticles were also conjugated to the backbone of chitosan to provide magnetic sensitivity. In morphological observation, images from a transmission electron microscope (TEM) showed that IO nanoparticles were embedded in the ChitoPEG/DOX/IO nanocomposites. In a drug release study, GSH addition accelerated DOX release rate from nanocomposites, indicating that nanocomposites have redox-responsiveness. Furthermore, external magnetic stimulus concentrated nanocomposites in the magnetic field and then provided efficient internalization of nanocomposites into cancer cells in cell culture experiments. In an animal study with CT26 cell-bearing mice, nanocomposites showed superior magnetic sensitivity and then preferentially targeted tumor tissues in the field of external magnetic stimulus. Nanocomposites composed of ChitoPEG/DOX/IO nanoparticle conjugates have excellent anticancer drug targeting properties.


Asunto(s)
Quitosano/análogos & derivados , Neoplasias del Colon/tratamiento farmacológico , Doxorrubicina/farmacología , Liberación de Fármacos , Glutatión/química , Nanopartículas de Magnetita/administración & dosificación , Polietilenglicoles/química , Polímeros/química , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Quitosano/química , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Doxorrubicina/química , Humanos , Nanopartículas de Magnetita/química , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Chemistry ; 26(11): 2470-2477, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31912555

RESUMEN

Multidrug resistance (MDR) is regarded as a main obstacle for effective chemotherapy, and P-glycoprotein (P-gp)-mediated drug efflux has been demonstrated to be the key factor responsible for MDR. In this study, a novel pH-responsive hybrid drug delivery system was developed by conjugating d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a kind of P-gp inhibitor, on the surface of laponite nanodisks to overcome MDR. The prepared LM-TPGS display excellent colloidal stability, a high encapsulation efficiency of doxorubicin (DOX), and a pH-responsive drug release profile. In vitro experiments verified that LM-TPGS/DOX could exhibit significantly enhanced therapeutic efficacy in treating DOX-resistant breast cancer cells (MCF-7/ADR) through inhibiting the activity of P-gp-mediated drug efflux and effectively accumulating DOX within cancer cells. In vivo results revealed that LM-TPGS/DOX outstandingly suppressed MCF-7/ADR tumors with low side effects. Therefore, the high drug payload, enhanced inhibition efficacy to drug-resistant cells, and low side effects make the LM-TPGS/DOX a promising nanoplatform to reverse MDR for effective chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanocápsulas/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Composición de Medicamentos/métodos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Vitamina E/química , Vitamina E/metabolismo
13.
Biochem Biophys Res Commun ; 512(3): 564-570, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30914200

RESUMEN

Baeyer-Villiger monooxygenase (BVMO) catalyzes insertion of an oxygen atom into aliphatic or cyclic ketones with high regioselectivity. The BVMOs from Parvibaculum lavamentivorans (BVMOParvi) and Oceanicola batsensis (BVMOOcean) are interesting because of their homologies, with >40% sequence identity, and reaction with the same cyclic ketones with a methyl moiety to give different products. The revealed BVMOParvi structure shows that BVMOParvi forms a two-domain structure like other BVMOs. It has two inserted residues, compared with BVMOOcean, that form a bulge near the bound flavin adenine dinucleotide in the active site. Furthermore, this bulge is linked to a nearby α-helix via a disulfide bond, probably restricting access of the bulky methyl group of the substrate to this bulge. Another sequence motif at the entrance of the active site (Ala-Ser in BVMOParvi and Ser-Thr in BVMOOcean) allows a large volume in BVMOParvi. These minute differences may discriminate a substrate orientation in both BVMOs from the initial substrate binding pocket to the final oxygenation site, resulting in the inserted oxygen atom being in different positions of the same substrate.


Asunto(s)
Alphaproteobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Cetonas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Alphaproteobacteria/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Dominio Catalítico , Cristalografía por Rayos X , Ciclización , Cetonas/química , Oxigenasas de Función Mixta/química , Modelos Moleculares , NADP/metabolismo , Oxígeno/metabolismo , Conformación Proteica , Especificidad por Sustrato
14.
J Nanosci Nanotechnol ; 19(2): 675-679, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30360140

RESUMEN

Bacterial iron oxide (IO) nanoparticles and doxorubicin (DOX) were complexed with lipid materials (magnetic lipocomplexes) for stimuli-sensitive drug targeting. DOX-incorporated magnetic lipocomplexes showed spherical core-shell structure with small diameter less than 300 nm, i.e., iron oxide nanoparticles were located in the inner-core of the lipocomplexes and these were surrounded by lipid bilayer. The complexe sizes were around 100 nm~300 nm while IO nanoparticle itself was smaller than 100 nm. DOX-incorporated magnetic lipocomplexes showed increased anticancer activity against CT26 mouse colorectal carcinoma cells. Stimulation with magnetic field resulted in higher cellular uptake ratio and suppression of cell growth. In vivo tumor imaging study using CT26-bearing tumor model proved that the magnet-sensitive delivery of DOX-incorporated magnetic lipocomplexes specifically suppressed the tumor growth. Magnetic lipocomplexes showed enhanced anticancer activity due to the magnet-sensitive drug delivery properties in vitro and in vivo.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Preparaciones Farmacéuticas , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Nanopartículas Magnéticas de Óxido de Hierro , Ratones
15.
J Korean Med Sci ; 34(5): e37, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718990

RESUMEN

BACKGROUND: Alendronate (AL), a drug for inhibiting osteoclast-mediated bone-resorption, was intercalated into an inorganic drug delivery nanovehicle, layered double hydroxide (LDH), to form a new nanohybrid, AL-LDH, with 1:1 heterostructure along the crystallographic C-axis. Based on the intercalation reaction strategy, the present AL-LDH drug delivery system (DDS) was realized with an enhanced drug efficacy of AL, which was confirmed by the improved proliferation and osteogenic differentiation of osteoblast-like cells (MG63). METHODS: The AL-LDH nanohybrid was synthesized by conventional ion-exchange reaction and characterized by powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. Additionally, in vitro efficacy tests, such as cell proliferation and alkaline phosphatase (ALP) activity, were analyzed. RESULTS: The AL was successfully intercalated into LDH via ion-exchange reaction, and thus prepared AL-LDH DDS was X-ray single phasic and chemically well defined. The accumulated AL content in MG63 cells treated with the AL-LDH DDS nanoparticles was determined to be 10.6-fold higher than that within those treated with the intact AL after incubation for 1 hour, suggesting that intercellular permeation of AL was facilitated thanks to the hybridization with drug delivery vehicle, LDH. Furthermore, both in vitro proliferation level and ALP activity of MG63 treated with the present hybrid drug, AL-LDH, were found to be much more enhanced than those treated with the intact AL. This is surely due to the fact that LDH could deliver AL drug very efficiently, although LDH itself does not show any effect on proliferation and osteogenic differentiation of MG63 cells. CONCLUSION: The present AL-LDH could be considered as a promising DDS for improving efficacy of AL.


Asunto(s)
Alendronato/química , Diferenciación Celular , Arcilla/química , Nanoestructuras/química , Osteogénesis , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/química , Humanos , Nanoestructuras/toxicidad , Osteogénesis/efectos de los fármacos , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
16.
BMC Neurosci ; 19(1): 45, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053803

RESUMEN

BACKGROUND: Although amyloid beta (Aß) imaging is widely used for diagnosing and monitoring Alzheimer's disease in clinical fields, paralleling comparison between 18F-flutemetamol and 18F-florbetaben was rarely attempted in AD mouse model. We performed a comparison of Aß PET images between 18F-flutemetamol and 18F-florbetaben in a recently developed APPswe mouse model, C57BL/6-Tg (NSE-hAPPsw) Korl. RESULTS: After an injection (0.23 mCi) of 18F-flutemetamol and 18F-florbetaben at a time interval of 2-3 days, we compared group difference of SUVR and kinetic parameters between the AD (n = 7) and control (n = 7) mice, as well as between 18F-flutemetamol and 18F-florbetaben image. In addition, bio-distribution and histopathology were conducted. With visual image and VOI-based SUVR analysis, the AD group presented more prominent uptake than did the control group in both the 18F-florbetaben and 18F-flutemetamol images. With kinetic analysis, the 18F-florbetaben images showed differences in K1 and k4 between the AD and control groups, although 18F-flutemetamol images did not show significant difference. 18F-florbetaben images showed more prominent cortical uptake and matched well to the thioflavin S staining images than did the 18F-flutemetamol image. In contrast, 18F-flutemetamol images presented higher K1, k4, K1/k2 values than those of 18F-florbetaben images. Also, 18F-flutemetamol images presented prominent uptake in the bowel and bladder, consistent with higher bio-distribution in kidney, lung, blood and heart. CONCLUSIONS: Compared with 18F-flutemetamol images, 18F-florbetaben images showed prominent visual uptake intensity, SUVR, and higher correlations with the pathology. In contrast, 18F-flutemetamol was more actively metabolized than was 18F-florbetaben (Son et al. in J Nucl Med 58(Suppl 1):S278, 2017].


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Mapeo Encefálico , Encéfalo/patología , Procesamiento de Imagen Asistido por Computador , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Compuestos de Anilina/farmacología , Animales , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Ratones Transgénicos , Tomografía de Emisión de Positrones/métodos , Estilbenos/farmacología
17.
Chem Rec ; 18(7-8): 1033-1053, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29418062

RESUMEN

Layered double hydroxides (LDHs) with two dimensional structure have been attracted considerable interest in exploring new intercalative nanohybrids, such as inorganic-LDHs, organic-LDHs and bio-LDHs ones, which often exhibit extraordinarily synergetic effects and complementary performances. More recently, bio-related nanotechnology becomes one of the most essential research field in the viewpoint of the health and safety of human being. In this regard, LDHs have been focused as an important inorganic material for gene and drug delivery carriers with imaging and targeting functions. In the present review, an attempt has been made to describe gene delivery systems based on LDH nanoparticles in terms of synthetic routes of gene-LDH nanohybrids, their physico-chemical properties, intercellular uptake mechanisms, intracellular trafficking pathways and drug resistance, and passive and active targeting functions in in-vitro and in-vivo, and finally imaging functions. And recent studies of gene-therapies with LDHs are also discussed from the viewpoint of state-of-the-art nanohybrids technology.


Asunto(s)
ADN/química , Técnicas de Transferencia de Gen , Hidróxidos/química , Nanopartículas/química , Nanomedicina Teranóstica , Animales , Línea Celular Tumoral , Humanos , Metales/química , Tamaño de la Partícula
18.
Chemistry ; 21(2): 697-703, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25394330

RESUMEN

Ordered porous carbon films with tunable pore diameters, immobilized with glucose oxidase (GOD) have been fabricated and employed for the construction of a biosensor for glucose molecules. The as-prepared porous films have large specific surface areas and highly ordered porous structure with uniform pore sizes, which are critical for the immobilization of large amounts of GOD and support the promotion of heterogeneous electron transfer. The developed biosensors give enough room for the encapsulation of a high amount of GOD molecules and show excellent biosensing performance with a linear response to glucose concentration ranging from 0.5 to 9 mM and a detection limit of 1.5 µM. It is also demonstrated that the sensitivity of the biosensor can be easily tuned by modulating the pore size of carbon film as it dictates the amount of immobilization of GOD in the porous channels. The fabricated carbon-film-based biosensor has a good stability and a high reproducibility, which opens the gateway for the commercialization of this excellent technology.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono/química , Glucosa/análisis , Nanoestructuras/química , Aspergillus/enzimología , Enzimas Inmovilizadas/metabolismo , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Nanoestructuras/ultraestructura , Porosidad , Reproducibilidad de los Resultados
19.
Chem Biodivers ; 12(3): 380-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25766911

RESUMEN

Coicis semen (=the hulled seed of Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.) Stapf; Gramineae), commonly known as adlay and Job's tears, is widely used in traditional medicine and as a nutritious food. Bioassay-guided fractionation of the AcOEt fraction of unhulled adlays, using measurement of nitric oxide (NO) production on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, led to the isolation and identification of two new stereoisomers, (+)-(7'S,8'R,7″S,8″R)-guaiacylglycerol ß-O-4'-dihydrodisinapyl ether (1) and (+)-(7'S,8'R,7″R,8″R)-guaiacylglycerol ß-O-4'-dihydrodisinapyl ether (2), together with six known compounds, 3-8. Compounds 3 and 4 exhibited inhibitory activities on LPS-induced NO production with IC50 values of 1.4 and 3.7 µM, respectively, and suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in RAW 264.7 macrophage cells. Simple high-performance liquid chromatography with ultraviolet detection (HPLC/UV) was used to compare the AcOEt fraction of unhulled adlays responsible for the anti-inflammatory activity in RAW 264.7 cells and the inactive AcOEt fraction of hulled adlays.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Coix/química , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Línea Celular , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/aislamiento & purificación , Inhibidores de la Ciclooxigenasa 2/farmacología , Macrófagos/inmunología , Ratones , Óxido Nítrico/inmunología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/inmunología , Extractos Vegetales/aislamiento & purificación
20.
J Am Chem Soc ; 136(35): 12201-4, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25119430

RESUMEN

Microsized chemosensor particle (CPP-16, CPP means coordination polymer particle), which is made from a metal-organic framework (MOF), is synthesized using pyrene-functionalized organic building block. This building block contains three important parts, a framework construction part, a Cu(2+) detection part, and a fluorophore part. PXRD studies have revealed that CPP-16 has a 3D cubic structure of MOF-5. During both MOF formation and sensing event, fluorophores within CPP-16 undergo dual changes in conformation and optical properties. After MOF construction, pyrene moieties experience an unusual complete conversion from monomer to excimer form. This conversion takes place due to a confinement effect induced by space limitations within the MOF structure. The selective sensing ability of CPP-16 on Cu(2+) over many other metal ions is verified by emission spectra and is also visually identified by fluorescence microscopy images. Specific interaction of Cu(2+) with binding sites within CPP-16 causes a second conformational change of the fluorophores, where they change from stacked excimer (CPP-16) to quenched excimer states (CPP-16·Cu(2+)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA