Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 52: 116518, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34826680

RESUMEN

Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway. Over 50 thiazolidinediones and related analogues have been prepared in order to thoroughly evaluate the structure-activity relationships against this enzyme of significant interest.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos/farmacología , Hidroliasas/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Hidroliasas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química
2.
Bioorg Med Chem ; 25(24): 6267-6272, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29032931

RESUMEN

With multidrug resistant bacteria on the rise, novel antibiotics are becoming highly sought after. In 2008, eleven compounds were identified by high throughput screening as inhibitors of BasE, a key enzyme of the non-ribosomal peptide synthetase pathway found in Acinetobacter baumannii. Herein, we describe the preparation of four structurally similar heterocyclic lead compounds from that study, including one 1,2,5-oxadiazole. A further library of 30 analogues containing the oxadiazole moiety was then generated. All compounds were screened against Acinetobacter baumannii and their minimum inhibitory concentration data is reported, with (E)-3-(2-hydroxyphenyl)-N-(4-methyl-1,2,5-oxadiazol-3-yl)acrylamide 32 found to have an MIC of 0.5mM. This work provides the foundation for further investigation of 1,2,5-oxadizoles as novel inhibitors of A. baumannii.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Oxadiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Relación Estructura-Actividad
3.
Org Biomol Chem ; 14(20): 4617-39, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27105169

RESUMEN

Central to malaria pathogenesis is the invasion of human red blood cells by Plasmodium falciparum parasites. Following each cycle of intracellular development and replication, parasites activate a cellular program to egress from their current host cell and invade a new one. The orchestration of this process critically relies upon numerous organised phospho-signaling cascades, which are mediated by a number of central kinases. Parasite kinases are emerging as novel antimalarial targets as they have diverged sufficiently from their mammalian counterparts to allow selectable therapeutic action. Parasite protein kinase A (PfPKA) is highly expressed late in the cell cycle of the parasite blood stage and has been shown to phosphorylate a critical invasion protein, Apical Membrane Antigen 1. This enzyme could therefore be a valuable drug target so we have repurposed a substituted 4-cyano-3-methylisoquinoline that has been shown to inhibit rat PKA with the goal of targeting PfPKA. We synthesised a novel series of compounds and, although many potently inhibit the growth of chloroquine sensitive and resistant strains of P. falciparum, they were found to have minimal activity against PfPKA, indicating that they likely have another target important to parasite cytokinesis and invasion.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Diseño de Fármacos , Isoquinolinas/síntesis química , Isoquinolinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Secuencia de Aminoácidos , Antimaláricos/química , Técnicas de Química Sintética , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/química , Evaluación Preclínica de Medicamentos , Isoquinolinas/química , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo
4.
RSC Med Chem ; 14(9): 1698-1703, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37731698

RESUMEN

The synthesis of the first dimeric inhibitor of E. coli dihydrodipicolinate synthase (DHDPS) is reported herein. Inspired by 2,4-thiazolidinedione based ligands previously shown to inhibit DHDPS, a series of dimeric inhibitors were designed and synthesised, incorporating various alkyl chain bridges between two 2,4-thiazolidinedione moieties. Aiming to exploit the multimeric nature of this enzyme and enhance potency, a dimeric compound with a single methylene bridge achieved the desired outcome with low micromolar inhibition of E. coli DHDPS observed. This work highlights the continued importance of investigation into DHDPS as an antibacterial target. Furthermore, we demonstrate the design of dimeric ligands can provide a promising strategy to improve potency in the search for novel bioactive compounds.

5.
Elife ; 112022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35723913

RESUMEN

Herbicides with novel modes of action are urgently needed to safeguard global agricultural industries against the damaging effects of herbicide-resistant weeds. We recently developed the first herbicidal inhibitors of lysine biosynthesis, which provided proof-of-concept for a promising novel herbicide target. In this study, we expanded upon our understanding of the mode of action of herbicidal lysine biosynthesis inhibitors. We previously postulated that these inhibitors may act as proherbicides. Here, we show this is not the case. We report an additional mode of action of these inhibitors, through their inhibition of a second lysine biosynthesis enzyme, and investigate the molecular determinants of inhibition. Furthermore, we extend our herbicidal activity analyses to include a weed species of global significance.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Lisina , Malezas , Control de Malezas
6.
Elife ; 102021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34313586

RESUMEN

Weeds are becoming increasingly resistant to our current herbicides, posing a significant threat to agricultural production. Therefore, new herbicides with novel modes of action are urgently needed. In this study, we exploited a novel herbicide target, dihydrodipicolinate synthase (DHDPS), which catalyses the first and rate-limiting step in lysine biosynthesis. The first class of plant DHDPS inhibitors with micromolar potency against Arabidopsis thaliana DHDPS was identified using a high-throughput chemical screen. We determined that this class of inhibitors binds to a novel and unexplored pocket within DHDPS, which is highly conserved across plant species. The inhibitors also attenuated the germination and growth of A. thaliana seedlings and confirmed their pre-emergence herbicidal activity in soil-grown plants. These results provide proof-of-concept that lysine biosynthesis represents a promising target for the development of herbicides with a novel mode of action to tackle the global rise of herbicide-resistant weeds.


Asunto(s)
Arabidopsis/efectos de los fármacos , Herbicidas/química , Herbicidas/farmacología , Lisina/biosíntesis , Hidroliasas/metabolismo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA