Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 92(17): 11987-11993, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786483

RESUMEN

A new chromatographic method for isolation of W from large masses of silicate samples (>1 g) for ultrahigh precision isotopic analysis was developed. The purification of W was achieved through two stages of rapid chromatographic separations. In the first step, Ti, Zr, Hf, and W were separated collectively from the sample matrix through an AG1-X8 (100-200 mesh) column with a 10 mL resin volume. Subsequently, W was rapidly separated from Ti and Zr-Hf with high purity by a two-step extraction chromatographic method using 0.6 and 0.3 mL TODGA resin columns (50-100 µm particle size), respectively. The total yield of W, including the anion exchange and the TODGA chromatographic separation steps, is greater than 90%. The procedure was employed to isolate W from rock reference materials GSJ JB-3 and USGS BHVO-2; the separated W was analyzed by TRITON Plus TIMS, yielding a 182W/184W of 0.864898 ± 0.000005 (n = 8, 2 SD) for JB-3 and 182W/184W of 0.864896 ± 0.000006 (n = 5, 2 SD) for BHVO-2, which are in agreement with previously reported values within analytical errors.

2.
Anal Chem ; 91(11): 7288-7294, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31070889

RESUMEN

Thermal ionization mass spectrometry (TIMS) has shown excellent analytical precision for Sr isotopic ratio analysis, even for small masses of material (0.5-10 ng). However, because of the sensitivity limit of TIMS, it is still not possible to obtain high precision 87Sr/86Sr isotope ratios for picogram-level sample sizes (30-100 pg) due to the lack of a highly sensitive emitter. This study is the first to employ a highly sensitive silicotungstic acid emitter to measure Sr isotopes at the picogram-level using TIMS. This emitter produces a 3-fold enhancement in the ionization efficiency of Sr and not only significantly reduces the required sample size but also has good external precision. Analyses of the NIST 987 standard yield an external reproducibility (2 RSD, n = 8) better than ±0.013% even for 30 pg of Sr. It is possible to yield an internal precision (2 RSE) of ±0.003% for 100 pg of sample using the default 1011 Ohm feedback resistors. This method was verified by using a suite of silicate reference materials. Replicate digestions and analyses ( n = 8) of the basalt standard BCR-2 (87Sr/86Sr = 0.704998 ± 0.000028, 2 SD) at the 326 ± 30 pg level demonstrates that good external reproducibility is reached on ultratrace level silicate samples. This method has a wide variety of potential applications for samples containing ultralow amounts of Sr in geoscience and archeological studies, such as single grains of mica, sphalerite, and pyrite, single mantle melt inclusions, precious extra-terrestrial materials, and human hair to name just a few.


Asunto(s)
Silicatos/química , Isótopos de Estroncio/análisis , Temperatura , Compuestos de Tungsteno/química , Silicatos de Aluminio/química , Cabello/química , Humanos , Hierro/química , Espectrometría de Masas , Sulfuros/química
3.
Anal Chem ; 87(17): 8765-71, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26255581

RESUMEN

We present a novel method for high precision measurement of (186)Os/(188)Os and (187)Os/(188)Os ratios, applying isobaric oxide interference correction based on in-run measurements of oxygen isotopic ratios. For this purpose, we set up a static data collection routine to measure the main Os(16)O3(-) ion beams with Faraday cups connected to conventional 10(11) amplifiers, and (192)Os(16)O2(17)O(-) and (192)Os(16)O2(18)O(-) ion beams with Faraday cups connected to 10(12) amplifiers. Because of the limited number of Faraday cups, we did not measure (184)Os(16)O3(-) and (189)Os(16)O3(-) simultaneously in-run, but the analytical setup had no significant influence on final (186)Os/(188)Os and (187)Os/(188)Os data. By analyzing UMd, DROsS, an in-house Os solution standard, and several rock reference materials, including WPR-1, WMS-1a, and Gpt-5, the in-run measured oxygen isotopic ratios were proven to present accurate Os isotopic data. However, (186)Os/(188)Os and (187)Os/(188)Os data obtained with in-run O isotopic compositions for the solution standards and rock reference materials show minimal improvement in internal and external precision, compared to the conventional oxygen correction method. We concluded that, the small variations of oxygen isotopes during OsO3(-) analytical sessions are probably not the main source of error for high precision Os isotopic analysis. Nevertheless, use of run-specific O isotopic compositions is still a better choice for Os isotopic data reduction and eliminates the requirement of extra measurements of the oxygen isotopic ratios.

4.
Anal Chem ; 87(14): 7426-32, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26105121

RESUMEN

Thermal ionization mass spectrometry (TIMS) allows excellent precision for determining Sr isotope ratios in natural water samples. Traditionally, a chemical separation procedure using cation exchange resin has been employed to obtain a high purity Sr fraction from natural water, which makes sample preparation time-consuming. In this study, we present a rapid and precise method for the direct determination of the Sr isotope ratio of natural water using TIMS equipped with amplifiers with two 10(12) Ω resistors. To eliminate the (87)Rb isobaric interference, Re ribbons are used as filaments, providing a significant advantage over W ribbons in the inhibition of Rb(+) emission, based on systematically examining a series of NIST SRM987 standard doping with various amounts of Rb using Re and W ribbons. To validate the applicability of our method, twenty-two natural water samples, including different water types (rain, snow, river, lake and drinking water), that show a large range in Sr content variations (2.54-922.8 ppb), were collected and analyzed from North and South China. Analytical results show good precision (0.003-0.005%, 2 RSE) and the method was further validated by comparative analysis of the same water with and without chemical separation. The method is simple and rapid, eliminates sample preparation time, and prevents potential contamination during complicated sample-preparation procedures. Therefore, a high sample throughput inherent to the TIMS can be fully utilized.

5.
Anal Chem ; 86(22): 11141-50, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25301302

RESUMEN

The NdO(+) technique has been considerably refined in recent years for high-precision measurement of Nd isotope ratios in low-level samples (1-5 ng Nd). As oxygen isotopic compositions may vary significantly with experimental conditions such as filament material, ionization enhancer and the ambient oxygen in the ion source, great "care" should be taken for using correct oxygen isotopic compositions to do the isobaric oxide corrections for the "conventional" NdO(+) method. Our method presented here for NdO(+) data reduction and PrO(+) interference corrections uses the oxygen isotope composition determined in each cycle of the NdO(+) measurements. For that purpose, we measured the small ion signals of (150)Nd(17)O(+) and (150)Nd(18)O(+) with amplifiers equipped with 10(12) Ω feedback resistors, and those of Nd(16)O(+) ion beams with 10(11) Ω amplifiers. Using 10(12) Ω amplifiers facilitates a precise measurement of the very small (150)Nd(17)O(+) and (150)Nd(18)O(+) ion signals and calculation of highly accurate and precise (143)Nd/(144)Nd isotope ratios. The (143)Nd/(144)Nd ratios for JNdi-1 standards and several whole-rock reference materials determined with the method on 4 ng of Nd loads are consistent with previously reported values within analytical error, with internal and external precision (2 RSE and 2 RSD) of better than 20 and 30 ppm, respectively.

6.
Talanta ; 257: 124390, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36848764

RESUMEN

Thermal ionization mass spectrometry (TIMS) is the workhorse for lead isotopic ratio analysis due to its excellent precision. Silica gel as ionization activator on Re filament is proved to the best emitter that can provide excellent sensitivity even small Pb sample size. However, the price of Re filament is three times that of Ta filament that leads to high experimental cost for TIMS laboratory. Here, we first present a novel silicon nitride (ß-Si3N4) emitter on the Ta filament with good sensitivity for Pb isotopic ratio measurements. Hence, the cost of filament material is cut down ∼70%. The ß-Si3N4 emitter can yield stable and long-life Pb+ signal, about 2-3 V 208Pb and 0.65-0.90 V 208Pb for 20 ng and 5 ng NIST SRM981 sample size that is applicable to the most geological materials for bulk analysis. A suite of silicate reference materials were analyzed to verify the reliability and accuracy of our method. For 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb isotope ratios of geological samples, excellent internal precisions (2 SE) of ±0.005%-0.013% are achieved. Replicate digestions and analyses of the basalt standard BCR-2 and coal fly ash standard GBW08401 demonstrate that good external precision is obtainable that is 0.10-0.18% (n = 6, 2 SD) for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios.

7.
Anal Chem ; 84(14): 6040-7, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22746207

RESUMEN

Isotope dilution thermal ionization mass spectrometry (ID-TIMS) is the standard technique used to achieve precise (143)Nd/(144)Nd and (147)Sm/(144)Nd isotope ratios and accurate elemental concentrations of Sm-Nd. However, in previous studies, purified Sm and Nd fractions must be individually loaded onto different filaments for their accurate determination using TIMS because of severe isobaric interferences. Thus, the classical ID-TIMS technique is time consuming and laborious. In this study, a new method is proposed, which is able to acquire both ratios of (143)Nd/(144)Nd and (147)Sm/(144)Nd and concentrations of Sm-Nd simultaneously on the same filament arrangement. The measurement time and filament consumption are reduced by 50% with the current method, and therefore, the operation cost of TIMS is significantly reduced. A mixed (152)Sm-(148)Nd spike was employed to achieve accurate results after spike subtraction and isobaric interference corrections. Results obtained from a series of standard rock samples are in good agreement with recommended values, within ±0.003% for the (143)Nd/(144)Nd ratio and ±1% for the (147)Sm/(144)Nd ratio.

8.
ACS Omega ; 7(4): 3634-3638, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128271

RESUMEN

Dating mafic igneous rocks (silica-undersaturated) is difficult for the lack of suitable minerals such as zircons (ZrSiO4) commonly found in the sialic rocks such as granites. In this regard, baddeleyite (ZrO2) has been long recognized as the most important mineral to serve as a geochronometer for dating silica-undersaturated igneous rocks. However, separating baddeleyite is difficult due to its small grain size, typical tabular morphology, and low abundance in samples. The standard water-based separation technique requires kilogram-sized samples and usually has a very low recovery rate. In this study, a new separation method based on the different solubilities of the minerals within HF + HCl + HNO3 reagents was developed to achieve a high recovery of baddeleyite. With ∼19 g of diabase powder, the new method recovers 150-160 baddeleyite grains of 10-100 µm length and 4-50 µm width, an order of magnitude improvement over the water-based separation method, which typically recovers 11-12 similarly sized baddeleyite grains out of the ∼19 g sample. Subsequent secondary ion mass spectrometry U-Pb analyses demonstrate that the baddeleyite grains recovered by the new separation method keep the U-Pb system closed, indicating no Pb loss during acid treatment. Thus, this new method enables the most efficient baddeleyite recovery from gram-sized rocks and is anticipated to greatly contribute to the geochronological study of silica-unsaturated mafic rocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA