Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Small ; 20(25): e2307774, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38200683

RESUMEN

Tin (Sn)-based perovskites are being investigated in many optoelectronic applications given their similar valence electron configuration to that of lead-based perovskites and the potential environmental hazards of lead-based perovskites. However, the formation of high-quality Sn-based perovskite films faces several challenges, mainly due to the easy oxidation of Sn2+ to Sn4+ and the fast crystallization rate. Here, to develop an environmentally friendly process for Sn-based perovskite fabrication, a series of natural antioxidants are studied as additives and ascorbic acid (VitC) is found to have a superior ability to inhibit the oxidation problem. A common cyclic molecule, 18-Crown-6, is further added as a second additive, which synergizes with VitC to significantly reduce the nonradiative recombination pathways in the PEA2SnI4 film. This synergistic effect greatly improves the performance of 2D red Sn-based PeLED, with a maximum external quantum efficiency of 1.87% (≈9 times that of the pristine device), a purer color, and better bias stability. This work demonstrates the potential of the dual-additive approach in enhancing the performance of 2D Sn-based PeLEDs, while the use of these environmentally friendly additives contributes to their future sustainability.

2.
Macromol Rapid Commun ; 45(1): e2300058, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36913597

RESUMEN

Up to now, researches on the mobility-stretchability of semiconducting polymers are extensively investigated, but little attention was  paid to their morphology and field-effect transistor characteristics under compressive strains, which is equally crucial in wearable electronic applications. In this work, a contact film transfer method is applied to evaluate the mobility-compressibility properties of conjugated polymers. A series of isoindigo-bithiophene conjugated polymers with symmetric carbosilane side chains (P(SiSi)), siloxane-terminated alkyl side chains (P(SiOSiO)), and combined asymmetric side chains (P(SiOSi)) are investigated. Accordingly, a compressed elastomer slab is used to transfer and compress the polymer films by releasing prestrain, and the morphology and mobility evolutions of these polymers are tracked. It is found that P(SiOSi) outperforms the other symmetric polymers including P(Si─Si) and P(SiO─SiO), having the ability to dissipate strain with its shortened lamellar spacing and orthogonal chain alignment. Notably, the mechanical durability of P(SiOSi) is also enhanced after consecutive compress-release cycles. In addition, the contact film transfer technique is demonstrated to be applicable to investigate the compressibility of different semiconducting polymers. These results demonstrate a comprehensive approach to understand the mobility-compressibility properties of semiconducting polymers under tensile and compressive strains.


Asunto(s)
Elastómeros , Polímeros , Polímeros/química , Siloxanos
3.
Small ; 19(20): e2207734, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36794296

RESUMEN

Two-dimensional (2D) tin (Sn)-based perovskites have recently received increasing research attention for perovskite transistor application. Although some progress is made, Sn-based perovskites have long suffered from easy oxidation from Sn2+ to Sn4+ , leading to undesirable p-doping and instability. In this study, it is demonstrated that surface passivation by phenethylammonium iodide (PEAI) and 4-fluorophenethylammonium iodide (FPEAI) effectively passivates surface defects in 2D phenethylammonium tin iodide (PEA2 SnI4 ) films, increases the grain size by surface recrystallization, and p-dopes the PEA2 SnI4 film to form a better energy-level alignment with the electrodes and promote charge transport properties. As a result, the passivated devices exhibit better ambient and gate bias stability, improved photo-response, and higher mobility, for example, 2.96 cm2 V-1 s-1 for the FPEAI-passivated films-four times higher than the control film (0.76 cm2 V-1 s-1 ). In addition, these perovskite transistors display non-volatile photomemory characteristics and are used as perovskite-transistor-based memories. Although the reduction of surface defects in perovskite films results in reduced charge retention time due to lower trap density, these passivated devices with better photoresponse and air stability show promise for future photomemory applications.

4.
Small ; 18(26): e2201076, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35638469

RESUMEN

The oxygen evolution reaction (OER) is crucial to electrochemical hydrogen production. However, designing and fabricating efficient electrocatalysts still remains challenging. By confinedly coordinating organic ligands with metal species in layered double hydroxides (LDHs), an innovative LDHs-assisted approach is developed to facilely synthesize freestanding bimetallic 2D metal-organic framework nanosheets (2D MOF NSs), preserving the metallic components and activities in OER. Furthermore, the research has demonstrated that the incorporation of carboxyl organic ligands coordinated with metal atoms as proton transfer mediators endow 2D MOF NSs with efficient proton transfer during the electrochemical OHads  â†’ Oads transition. These freestanding NiFe-2D MOF NSs require a small overpotential of 260 mV for a current density of 10 mA cm-2 . When this strategy is applied to LDH nanosheets grown on nickel foam, the overpotential can be reduced to 221 mV. This outstanding OER activity supports the capability of multimetallic organic frameworks for the rational design of water oxidation electrocatalysts. This strategy provides a universal path to the synthesis of 2D MOF NSs that can be used as electrocatalysts directly.

5.
Small ; 18(23): e2107834, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35532078

RESUMEN

As the power conversion efficiency (PCE) of organic photovoltaics (OPVs) approaches 19%, increasing research attention is being paid to enhancing the device's long-term stability. In this study, a robust interface engineering of graphene oxide nanosheets (GNS) is expounded on improving the thermal and photostability of non-fullerene bulk-heterojunction (NFA BHJ) OPVs to a practical level. Three distinct GNSs (GNS, N-doped GNS (N-GNS), and N,S-doped GNS (NS-GNS)) synthesized through a pyrolysis method are applied as the ZnO modifier in inverted OPVs. The results reveal that the GNS modification introduces passivation and dipole effects to enable better energy-level alignment and to facilitate charge transfer across the ZnO/BHJ interface. Besides, it optimizes the BHJ morphology of the photoactive layer, and the N,S doping of GNS further enhances the interaction with the photoactive components to enable a more idea BHJ morphology. Consequently, the NS-GNS device delivers enhanced performance from 14.5% (control device) to 16.5%. Moreover, the thermally/chemically stable GNS is shown to stabilize the morphology of the ZnO electron transport layer (ETL) and to endow the BHJ morphology of the photoactive layer grown atop with a more stable thermodynamic property. This largely reduces the microstructure changes and the associated charge recombination in the BHJ layer under constant thermal/light stresses. Finally, the NS-GNS device is demonstrated to exhibit an impressive T80 lifetime (time at which PCE of the device decays to 80% of the initial PCE) of 2712 h under a constant thermal condition at 65 °C in a glovebox and an outstanding photostability with a T80 lifetime of 2000 h under constant AM1.5G 1-sun illumination in an N2 -controlled environment.

6.
Chem Soc Rev ; 50(23): 13090-13128, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34676850

RESUMEN

Hybrid metal-halide perovskite solar cells (PVSCs) have drawn unprecedented attention during the last decade due to their superior photovoltaic performance, facile and low-cost fabrication, and potential for roll-to-roll mass production and application for portable devices. Through collective composition, interface, and process engineering, a comprehensive understanding of the structure-property relationship and carrier dynamics of perovskites has been established to help achieve a very high certified power conversion efficiency (PCE) of 25.5%. Apart from material properties, the modified heterojunction design and device configuration evolution also play crucial roles in enhancing the efficiency. The adoption and/or modification of heterojunction structures have been demonstrated to effectively suppress the carrier recombination and potential losses in PVSCs. Moreover, the employment of multijunction structures has been shown to reduce thermalization losses, achieving a high PCE of 29.52% in perovskite/silicon tandem solar cells. Therefore, understanding the evolution of the device configuration of PVSCs from single junction, heterojunction to multijunction designs is helpful for the researchers in this field to further boost the PCE beyond 30%. Herein, we summarize the evolution and progress of the single junction, heterojunction and multijunction designs for high-performance PVSCs. A comprehensive review of the fundamentals and working principles of these designs is presented. We first introduce the basic working principles of single junction PVSCs and the intrinsic properties (such as crystallinity and defects) in perovskite films. Afterwards, the progress of diverse heterojunction designs and perovskite-based multijunction solar cells is synopsized and reviewed. Meanwhile, the challenges and strategies to further enhance the performance are also summarized. At the end, the perspectives on the future development of perovskite-based solar cells are provided. We hope this review can provide the readers with a quick catchup on this emerging solution-processable photovoltaic technology, which is currently at the transition stage towards commercialization.

7.
Small ; 17(18): e2007746, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33738971

RESUMEN

Organic solar cells (OSCs) can achieve greatly improved power conversion efficiency (PCE) by incorporating suitable additives in active layers. Their structure design often faces the challenge of operation generality for more binary blends. Herein, a simple dithieno[3,2-b:2',3'-d]pyrrole-rhodanine molecule (DR8) featuring high compatibility with polymer donor PM6 is developed as a cost-effective third component. By employing classic ITIC-like ITC6-4Cl and Y6 as model nonfullerene acceptors (NFAs) in PM6-based binary blends, DR8 added PM6:ITC6-4Cl blends exhibit significantly promoted energy transfer and exciton dissociation. The PM6:ITC6-4Cl:DR8 (1:1:0.1, weight ratio) OSCs contribute an exciting PCE of 14.94% in comparison to host binary devices (13.52%), while PM6:Y6:DR8 (1:1.2:0.1) blends enable 16.73% PCE with all simultaneously improved photovoltaic parameters. To the best of the knowledge, this performance is among the best for ternary OSCs with simple small molecular third components in the literature. More importantly, DR8-added ternary OSCs exhibit much improved device stability against thermal aging and light soaking over binary ones. This work provides new insight on the design of efficient third components for OSCs.

8.
J Am Chem Soc ; 140(43): 14357-14366, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30346739

RESUMEN

5,14-Diaryldiindeno[2,1- f:1',2' -j]picene (DDP, 1), a thermally and chemically stable helical arene, can be prepared from 1,4-bis[2-(arylethynyl)phenyl]benzene in four synthetic steps. Its helical backbone, which incorporates an o-quinodimethane moiety, was verified by X-ray crystallography, and this structural feature results in a very high barrier to racemization (exceeding 50 kcal/mol). DDP possesses versatile and promising properties, including a small HOMO-LUMO energy gap (1.31 eV for the dimesityl-substituted derivative 1ab), an electron spin resonance (ESR)-active character, a small triplet-singlet energy gap (4.75 kcal/mol), broad photoabsorption covering the ultraviolet, visible, and near-infrared (NIR) regions, two-photon absorption in the NIR range, and respectable ambipolar charge-transport behavior in a solution-processed organic field-effect transistor.

9.
Small ; 14(22): e1704379, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29709108

RESUMEN

A one-step core/shell electrospinning technique is exploited to fabricate uniform luminous perovskite-based nanofibers, wherein the perovskite and the polymer are respectively employed in the core and the outer shell. Such a coaxial electrospinning technique enables the in situ formation of perovskite nanocrystals, exempting the needs of presynthesis of perovskite quantum dots or post-treatments. It is demonstrated that not only the luminous electrospun nanofibers can possess color-tunability by simply tuning the perovskite composition, but also the grain size of the formed perovskite nanocrystals is largely affected by the perovskite precursor stoichiometry and the polymer solution concentration. Consequently, the optimized perovskite electrospun nanofiber yields a high photoluminescence quantum yield of 30.9%, significantly surpassing the value of its thin-film counterpart. Moreover, owing to the hydrophobic characteristic of shell polymer, the prepared perovskite nanofiber is endowed with a high resistance to air and water. Its photoluminescence intensity remains constant while stored under ambient environment with a relative humidity of 85% over a month and retains intensity higher than 50% of its initial intensity while immersed in water for 48 h. More intriguingly, a white light-emitting perovskite-based nanofiber is successfully fabricated by pairing the orange light-emitting compositional perovskite with a blue light-emitting conjugated polymer.

10.
Macromol Rapid Commun ; 39(13): e1800271, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29845682

RESUMEN

Exploiting biomass has raised great interest as an alternative to the fossil resources for environmental protection. In this respect, polyethylene furanoate (PEF), one of the bio-based polyesters, thus reveals a great potential to replace the commonly used polyethylene terephthalate (PET) on account of its better mechanical, gas barrier, and thermal properties. Herein, a bio-based, flexible, conductive film is successfully developed by coupling a PEF plastic substrate with silver nanowires (Ag NWs). Besides the appealing advantage of renewable biomass, PEF also exhibits a good transparency around 90% in the visible wavelength range, and its constituent polar furan moiety is revealed to enable an intense interaction with Ag NWs to largely enhance the adhesion of Ag NWs grown above, as exemplified by the superior bending and peeling durability than the currently prevailing PET substrate. Finally, the efficiency of conductive PEF/Ag NWs film in fabricating efficient flexible organic thin-film transistor and organic photovoltaic (OPV) is demonstrated. The OPV device achieves a power conversion efficiency of 6.7%, which is superior to the device based on ITO/PEN device, manifesting the promising merit of the bio-based PEF for flexible electronic applications.


Asunto(s)
Conductividad Eléctrica , Membranas Artificiales , Nanocables/química , Polietilenos/química , Plata/química , Energía Solar
11.
Nano Lett ; 16(12): 7739-7747, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960463

RESUMEN

Wide bandgap MAPb(I1-yBry)3 perovskites show promising potential for application in tandem solar cells. However, unstable photovoltaic performance caused by phase segregation has been observed under illumination when y is above 0.2. Herein, we successfully demonstrate stabilization of the I/Br phase by partially replacing Pb2+ with Sn2+ and verify this stabilization with X-ray diffractometry and transient absorption spectroscopy. The resulting MAPb0.75Sn0.25(I1-yBry)3 perovskite solar cells show stable photovoltaic performance under continuous illumination. Among these cells, the one based on MAPb0.75Sn0.25(I0.4Br0.6)3 perovskite shows the highest efficiency of 12.59% with a bandgap of 1.73 eV, which make it a promising wide bandgap candidate for application in tandem solar cells. The engineering of internal bonding environment by partial Sn substitution is believed to be the main reason for making MAPb0.75Sn0.25(I1-yBry)3 perovskite less vulnerable to phase segregation during the photostriction under illumination. Therefore, this study establishes composition engineering of the metal site as a promising strategy to impart phase stability in hybrid perovskites under illumination.

12.
J Am Chem Soc ; 138(36): 11833-9, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27552001

RESUMEN

In this paper, an electron donor-acceptor (D-A) substituted dipolar chromophore (BTPA-TCNE) is developed to serve as an efficient dopant-free hole-transporting material (HTM) for perovskite solar cells (PVSCs). BTPA-TCNE is synthesized via a simple reaction between a triphenylamine-based Michler's base and tetracyanoethylene. This chromophore possesses a zwitterionic resonance structure in the ground state, as evidenced by X-ray crystallography and transient absorption spectroscopies. Moreover, BTPA-TCNE shows an antiparallel molecular packing (i.e., centrosymmetric dimers) in its crystalline state, which cancels out its overall molecular dipole moment to facilitate charge transport. As a result, BTPA-TCNE can be employed as an effective dopant-free HTM to realize an efficient (PCE ≈ 17.0%) PVSC in the conventional n-i-p configuration, outperforming the control device with doped spiro-OMeTAD HTM.

13.
Angew Chem Int Ed Engl ; 55(31): 8999-9003, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27273656

RESUMEN

Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6 % with negligible hysteresis. This study provides one of the first nonfullerene small-molecule-based ETMs for high-performance p-i-n PVSCs.

14.
Small ; 11(26): 3088-96, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25760403

RESUMEN

Organo-lead halide perovskite photovoltaics have developed faster than our understanding of the material itself. Using the vast body of work on perovskite processing created in just the past few years, it is possible to create a better picture of this material's complex phase-transformation behavior. This concept paper summarizes and correlates the current understanding of structural intermediates, kinetic controls, and structure-property relationships of organo-lead iodide perovskites. To this end, a new way of graphically relating information is developed, allowing the simultaneous mapping of schematic kinetic relationships between all currently prevailing perovskite deposition and growth techniques.

15.
Macromol Rapid Commun ; 35(11): 1039-45, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24700508

RESUMEN

The electrical memory characteristics of the n-channel organic field-effect transistors (OFETs) employing diverse polyimide (PI) electrets are reported. The synthesized PIs comprise identical electron donor and three different building blocks with gradually increasing electron-accepting ability. The distinct charge-transfer capabilities of these PIs result in varied type of memory behaviors from the write-one-read-many (WORM) to flash type. Finally, a prominent flexible WORM-type transistor memory is demonstrated and shows not only promising write-many-read-many (WMRM) multilevel data storage but also excellent mechanical and retention stability.


Asunto(s)
Resinas Sintéticas/química , Transistores Electrónicos , Técnicas Electroquímicas , Teoría Cuántica , Resinas Sintéticas/síntesis química , Dióxido de Silicio/química
16.
J Phys Chem Lett ; 15(27): 6974-6985, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38941557

RESUMEN

Synaptic transistors have been proposed to implement neuron activation functions of neural networks (NNs). While promising to enable compact, fast, inexpensive, and energy-efficient dedicated NN circuits, they also have limitations compared to digital NNs (realized as codes for digital processors), including shape choices of the activation function using particular types of transistor implementation, and instabilities due to noise and other factors present in analog circuits. We present a computational study of the effects of these factors on NN performance and find that, while accuracy competitive with traditional NNs can be realized for many applications, there is high sensitivity to the instability in the shape of the activation function, suggesting that, when highly accurate NNs are required, high-precision circuitry should be developed beyond what has been reported for synaptic transistors to date.

17.
ACS Nano ; 18(22): 14176-14186, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38768371

RESUMEN

Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.

18.
ACS Appl Mater Interfaces ; 15(12): 15745-15757, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36920493

RESUMEN

An integrated strategy of molecular design and conjugated polymer doping is proposed to improve the electronic characteristics for organic field effect transistor (OFET) applications. Here, a series of soluble naphthalene diimide (NDI)-based random donor-acceptor copolymers with selenophene π-conjugated linkers and four acceptors with different electron-withdrawing strengths (named as rNDI-N/S/NN/SS) are synthesized, characterized, and used for OFETs. N-type doping of NDI-based random copolymers using (12a,18a)-5,6,12,12a,13,18,18a,19-octahydro-5,6-dimethyl-13,18[1',2']-benzenobisbenzimidazo[1,2-b:2',1'-d]benzo[i][2.5]benzodiazocine potassium triflate adduct (DMBI-BDZC) is successfully demonstrated. The undoped rNDI-N, rNDI-NN, and rNDI-SS samples exhibit ambipolar charge transport, while rNDI-S presents only a unipolar n-type characteristic. Doping with DMBI-BDZC significantly modulates the performance of rNDI-N/S OFETs, with a 3- to 6-fold increase in electron mobility (µe) for 1 wt % doped device due to simultaneous trap mitigation, lower contact resistance (RC), and activation energy (EA), and enhanced crystallinity and edge-on orientation for charge transport. However, the doping of intrinsic pro-quinoidal rNDI-NN/SS films exhibits unchanged or even reduced device performance. These findings allow us to manipulate the energy levels by developing conjugated copolymers based on various acceptors and quinoids and to optimize the dopant-polymer semiconductor interactions and their impacts on the film morphology and molecular orientation for enhanced charge transport.

19.
Adv Sci (Weinh) ; 10(26): e2302232, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37400366

RESUMEN

Quasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface. The results surprisingly show that this additional layer does not improve the energy transfer between multiple quasi-2D phases in the perovskite film, but purely improves the electronic properties of the perovskite interface. On the one hand, it passivates the surface defects of the perovskite film; on the other hand, it promotes electron injection and prevents hole leakage across this interface. As a result, the modified quasi-2D pure Cs-based device shows a maximum brightness of > 70,000 cd m-2 (twice that of the control device), a maximum external quantum efficiency (EQE) of > 10% and a much lower efficiency roll-off at high bias voltages.

20.
Adv Mater ; 35(22): e2300945, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36912205

RESUMEN

Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm-2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA