RESUMEN
MicroRNAs (miRNAs) are sequentially processed by two RNase III enzymes, Drosha and Dicer. miR-451 is the only known miRNA whose processing bypasses Dicer and instead relies on the slicer activity of Argonaute-2 (Ago2). miR-451 is highly conserved in vertebrates and regulates erythrocyte maturation, where it becomes the most abundant miRNA. However, the basis for the non-canonical biogenesis of miR-451 is unclear. Here, we show that Ago2 is less efficient than Dicer in processing pre-miRNAs, but this deficit is overcome when miR-144 represses Dicer in a negative-feedback loop during erythropoiesis. Loss of miR-144-mediated Dicer repression in zebrafish embryos and human cells leads to increased canonical miRNA production and impaired miR-451 maturation. Overexpression of Ago2 rescues some of the defects of miR-451 processing. Thus, the evolution of Ago2-dependent processing allows miR-451 to circumvent the global repression of canonical miRNAs elicited, in part, by the miR-144 targeting of Dicer during erythropoiesis.
Asunto(s)
Proteínas Argonautas/genética , Eritropoyesis/genética , MicroARNs/genética , Animales , ARN Helicasas DEAD-box/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Interferencia de ARN , Ribonucleasa III/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrolloRESUMEN
Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.
Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Antivirales , COVID-19/genética , COVID-19/patología , Chlorocebus aethiops , Efecto Citopatogénico Viral , Citoesqueleto , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Fosfoproteínas/genética , Transporte de Proteínas , Proteoma/genética , SARS-CoV-2/genética , Transducción de Señal , Células Vero , Tratamiento Farmacológico de COVID-19RESUMEN
Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness.
Asunto(s)
Ebolavirus/genética , Infecciones por Filoviridae/virología , Filoviridae/genética , Replicación Viral , Animales , Línea Celular , Chlorocebus aethiops , Prueba de Complementación Genética , Genoma Viral , Fiebre Hemorrágica Ebola/virología , Interacciones Microbiota-Huesped , Humanos , Cuerpos de Inclusión/virología , Células Madre Pluripotentes Inducidas/virología , Macrófagos/virología , ARN Viral , Genética Inversa , Células Vero , Virión/genéticaRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1010268.].
RESUMEN
Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.
Asunto(s)
MicroARNs/genética , Ribonucleasa III/metabolismo , Pez Cebra , Animales , Humanos , MicroARNs/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismoRESUMEN
This study aimed to estimate variance components (VCs) for growth and reproductive traits in Nellore cattle using two relationship matrices (pedigree relationship A matrix and pedigree plus genomic relationship H matrix), and records collected before and after genomic selection (GS) implementation. The study also evaluated how genomic breeding values (GEBV) are affected by variance components and discarding old records. The analysed traits were weight at 120 days (W120), weight and scrotal circumference at 450 days (W450 and SC450, respectively). Three datasets were used to estimate VCs, including all phenotypic information (All) or records for animals born before or after GS implementation (Before or After datasets, respectively). Both relationship matrices were considered for VC estimation, the A matrix was used in all three datasets and VC from each combination were named as A_Before, A_After, and A_All). The H was used in two datasets: H_All and H_After. Different VCs were used for GEBV prediction through ssGBLUP. This step used two possible Datasets, using all available phenotypic data (Dataset 1) or just records collected since GS implementation (Dataset 2). Validation was conducted using accuracy, bias and dispersion according to the LR method and prediction accuracy from corrected phenotypes. The heritability of all traits increased from A_Before to A_After, while estimates for A_All were intermediary. In the previous order, the estimates were 0.16, 0.17, and 0.15 for W120; 0.31, 0.39, and 0.35 for W450; 0.35, 0.47, and 0.41 for SC. For W450 and SC, using the H matrix reduced the heritability (0.33 and 0.32 for W450; 0.41 and 0.38 for SC for H_After and H_All, respectively). For W120, Dataset1 and VCs from A_After showed the highest accuracy for direct and maternal GEBV (0.953 and 0.868). For W450, Dataset 1 and VC from H_After allowed the highest accuracy (0.854) but use Dataset 2 and same VC source yield similar value (0.846). For SC, Dataset 2 with VC from H_After showed the highest accuracy (0.925). To use Dataset 2 does not cause important changes in bias or dispersion with respect to Dataset 1. The VC and genetic parameters changed for W120, W450, and SC450, using records before or after the GS implementation. For W450 and SC450, genetic variance and heritability estimates increased with the use of GS. For W120, genomic predictions were more accurate using A for VC estimation. Accuracy gains were observed for W450 and SC450 using H in VC estimation and/or discarding records before GS. It is possible to discard phenotypic records before GS implementation without generating bias or dispersion in the GEBV of young candidates.
RESUMEN
The 3' untranslated regions (UTRs) of Ebola virus (EBOV) mRNAs are enriched in their AU content and therefore represent potential targets for RNA binding proteins targeting AU-rich elements (ARE-BPs). ARE-BPs are known to fine-tune RNA turnover and translational activity. We identified putative AREs within EBOV mRNA 3' UTRs and assessed whether they might modulate mRNA stability. Using mammalian and zebrafish embryo reporter assays, we show a conserved, ARE-BP-mediated stabilizing effect and increased reporter activity with the tested EBOV 3' UTRs. When coexpressed with the prototypic ARE-BP tristetraprolin (TTP, ZFP36) that mainly destabilizes its target mRNAs, the EBOV nucleoprotein (NP) 3' UTR resulted in decreased reporter gene activity. Coexpression of NP with TTP led to reduced NP protein expression and diminished EBOV minigenome activity. In conclusion, the enrichment of AU residues in EBOV 3' UTRs makes them possible targets for cellular ARE-BPs, leading to modulation of RNA stability and translational activity.
Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Regiones no Traducidas 3'/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/genética , Pez Cebra/metabolismo , Estabilidad del ARN/genética , MamíferosRESUMEN
RNA provides the framework for the assembly of some of the most intricate macromolecular complexes within the cell, including the spliceosome and the mature ribosome. The assembly of these complexes relies on the coordinated association of RNA with hundreds of trans-acting protein factors. While some of these trans-acting factors are RNA-binding proteins (RBPs), others are adaptor proteins, and others still, function as both. Defects in the assembly of these complexes results in a number of human pathologies including neurodegeneration and cancer. Here, we demonstrate that Silencing Defective 2 (SDE2) is both an RNA binding protein and also a trans-acting adaptor protein that functions to regulate RNA splicing and ribosome biogenesis. SDE2 depletion leads to widespread changes in alternative splicing, defects in ribosome biogenesis and ultimately complete loss of cell viability. Our data highlight SDE2 as a previously uncharacterized essential gene required for the assembly and maturation of the complexes that carry out two of the most fundamental processes in mammalian cells.
Asunto(s)
Empalme Alternativo/genética , Proteínas de Unión al ADN/genética , Empalme del ARN/genética , Ribosomas/genética , Genes Esenciales/genética , Humanos , Proteínas de Unión al ARN/genética , Empalmosomas/genéticaRESUMEN
The aim of this work was to evaluate the impact of applying genomic information in pedigree uncertainty situations on genetic evaluations for growth- and cow productivity-related traits in Nelore commercial herds. Records for accumulated cow productivity (ACP) and adjusted weight at 450 days of age (W450) were used, as well as genotypes of registered and commercial herd animals, genotyped with the Clarifide Nelore 3.1 panel (~29,000 SNPs). The genetic values for commercial and registered populations were estimated using different approaches that included (ssGBLUP) or did not include genomic information (BLUP), with different pedigree structures. Different scenarios were tested, varying the proportion of young animals with unknown sires (0, 25, 50, 75, and 100%), and unknown maternal grandsires (0, 25, 50, 75, and 100%). The prediction accuracies and abilities were calculated. The estimated breeding value accuracies decreased as the proportion of unknown sires and maternal grandsires increased. The genomic estimated breeding value accuracy using the ssGBLUP was higher in scenarios with a lower proportion of known pedigree when compared to the BLUP methodology. The results obtained with the ssGBLUP showed that it is possible to obtain reliable direct and indirect predictions for young animals from commercial herds without pedigree structure.
Asunto(s)
Genoma , Modelos Genéticos , Femenino , Bovinos , Animales , Linaje , Genómica/métodos , Genotipo , FenotipoRESUMEN
Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different cis-elements and trans-factors are integrated to determine mRNA stability remains poorly understood. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. By using a massively parallel reporter assay, we identified cis-regulatory sequences in the 3' UTR, including U-rich motifs that are associated with increased mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC, and CUGC elements emerged as destabilizing motifs, with miR-430 and AREs causing mRNA deadenylation upon genome activation. We identified trans-factors by profiling RNA-protein interactions and found that poly(U)-binding proteins are preferentially associated with 3' UTR sequences and stabilizing motifs. We show that this activity is antagonized by C-rich motifs and correlated with protein binding. Finally, we integrated these regulatory motifs into a machine learning model that predicts reporter mRNA stability in vivo.
Asunto(s)
Regiones no Traducidas 3' , Regulación del Desarrollo de la Expresión Génica , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Aprendizaje Automático , Modelos Genéticos , Secuencias Reguladoras de Ácido Ribonucleico , Pez Cebra/embriología , Pez Cebra/genética , CigotoRESUMEN
In Nellore beef cattle, studies addressing genetic correlations between ultrasound marbling content and other economically important traits are still incipient. Therefore, this work aimed to estimate heritability and genetic correlations between ultrasound marbling content in the longissimus dorsi muscle (MARB) and growth, reproductive, feed efficiency, and carcass-related traits in a Nellore beef cattle population from Brazil. Phenotypic records of 614,395 Nellore animals were used and included adjusted weight at 210 (W210) and 450 (W450) days of age, adult cow weight (AW), early heifer pregnancy (EH), stayability (STAY), adjusted scrotal circumference at 365 days of age (SC365), ribeye area (REA), subcutaneous backfat thickness (BF), rump fat thickness (RF), and marbling (MARB). The genetic parameters for all traits but EH and STAY were estimated considering a linear animal model, whereas for those two nonlinear traits, a threshold animal model was used. The direct and correlated response to selection for MARB versus the other traits, and the relative efficiency of selection, were also calculated. The heritability estimate for MARB was 0.31 and for the other conventional evaluated traits was low to moderate, with values ranging from 0.14 to 0.41. The genetic correlations between MARB and growth, reproductive, feed efficiency, and carcass-related trait were very low, with values close to zero, with similar correlated responses. The MARB displayed adequate genetic variability to respond to selection and crossbreeding programs looking forward to higher meat quality and differential market standards for the Nellore beef. The selection for growth, reproductive, feed efficiency, and carcass-related traits would not affect MARB in Nellore beef cattle and vice versa. Therefore, this trait should be included as a selection criterion in the Nellore breeding program.
Asunto(s)
Carne , Reproducción , Animales , Bovinos/genética , Ingestión de Alimentos/genética , Femenino , Músculo Esquelético/fisiología , Fenotipo , Reproducción/genéticaRESUMEN
Persistency is the rate of decrease after milk production peak, mathematical models such as Wood's can be used to estimate it for describing the lactation curve and its rate of descent; random regression models are also useful, as they describe the genetic lactation curve for each animal. The objective of this study was to compare Best Linear Unbiased Prediction (BLUP), marker-assisted BLUP (MBLUP) model and random regression model (RRM) to estimate genetic parameters and breeding values for the lactation persistency curve. 4,658 test day measurements were available for 733 individuals, from which lactation curves were described to calculate persistency, estimating genetic parameters and values for this trait through BLUP and MBLUP. A similar process was done for RRM, where persistency was estimated from the genetic lactation curve. The heritability obtained using RRM was 0.51, greater than that obtained by BLUP (0.29) and MBLUP (0.21). The reliability of the genetic value for persistency in bulls was greater when RRM was used, but there was no correlation between the genetic values of different models. The highest heritability for persistency and the more reliable genetic values for bulls were achieved under the RRM, it allows positioning this methodology as an important tool for genetic evaluation of persistency.
Asunto(s)
Lactancia , Leche , Animales , Bovinos/genética , Femenino , Masculino , Modelos Genéticos , Fenotipo , Reproducibilidad de los ResultadosRESUMEN
The proto-oncogene ß-catenin drives colorectal cancer (CRC) tumorigenesis. Casitas B-lineage lymphoma (c-Cbl) inhibits CRC tumor growth through targeting nuclear ß-catenin by a poorly understood mechanism. In addition, the role of c-Cbl in human CRC remains largely underexplored. Using a novel quantitative histopathologic technique, we demonstrate that patients with high c-Cbl-expressing tumors had significantly better median survival (3.7 years) compared with low c-Cbl-expressing tumors (1.8 years; P = 0.0026) and were more than twice as likely to be alive at 3 years compared with low c-Cbl tumors (P = 0.0171). Our data further demonstrate that c-Cbl regulation of nuclear ß-catenin requires phosphorylation of c-Cbl Tyr371 because its mutation compromises its ability to target ß-catenin. The tyrosine 371 (Y371H) mutant interacted with but failed to ubiquitinate nuclear ß-catenin. The nuclear localization of the c-Cbl-Y371H mutant contributed to its dominant negative effect on nuclear ß-catenin. The biological importance of c-Cbl-Y371H was demonstrated in various systems, including a transgenic Wnt-8 zebrafish model. c-Cbl-Y371H mutant showed augmented Wnt/ß-catenin signaling, increased Wnt target genes, angiogenesis, and CRC tumor growth. This study demonstrates a strong link between c-Cbl and overall survival of patients with CRC and provides new insights into a possible role of Tyr371 phosphorylation in Wnt/ß-catenin regulation, which has important implications in tumor growth and angiogenesis in CRC.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/mortalidad , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Tirosina/metabolismo , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neovascularización Patológica , Fosforilación , Pronóstico , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-cbl/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Proteína Wnt1/genética , Pez Cebra , beta Catenina/genéticaRESUMEN
Zinc-finger nucleases (ZFNs) allow targeted gene inactivation in a wide range of model organisms. However, construction of target-specific ZFNs is technically challenging. Here, we evaluate a straightforward modular assembly-based approach for ZFN construction and gene inactivation in zebrafish. From an archive of 27 different zinc-finger modules, we assembled more than 70 different zinc-finger cassettes and evaluated their specificity using a bacterial one-hybrid assay. In parallel, we constructed ZFNs from these cassettes and tested their ability to induce lesions in zebrafish embryos. We found that the majority of zinc-finger proteins assembled from these modules have favorable specificities and nearly one-third of modular ZFNs generated lesions at their targets in the zebrafish genome. To facilitate the application of ZFNs within the zebrafish community we constructed a public database of sites in the zebrafish genome that can be targeted using this archive. Importantly, we generated new germline mutations in eight different genes, confirming that this is a viable platform for heritable gene inactivation in vertebrates. Characterization of one of these mutants, gata2a, revealed an unexpected role for this transcription factor in vascular development. This work provides a resource to allow targeted germline gene inactivation in zebrafish and highlights the benefit of a definitive reverse genetic strategy to reveal gene function.
Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Dedos de Zinc/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , ADN/genética , ADN/metabolismo , Bases de Datos Genéticas , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Marcación de Gen , Mutación , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Pez Cebra/embriologíaRESUMEN
Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multigene pathways or genome-wide alterations.
Asunto(s)
Endonucleasas/genética , Endonucleasas/metabolismo , Ingeniería de Proteínas , Dedos de Zinc/fisiología , Animales , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma , Glycine max/genética , Pez Cebra/genética , Dedos de Zinc/genéticaRESUMEN
Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis established that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.
RESUMEN
Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis establish that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.
Asunto(s)
Cromatina , Eritropoyesis , MicroARNs , Pez Cebra , MicroARNs/metabolismo , MicroARNs/genética , Eritropoyesis/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Humanos , Animales , Cromatina/metabolismo , Cromatina/genética , Eritrocitos/metabolismo , Regiones no Traducidas 3'/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular/genéticaRESUMEN
Obesity has increasingly become a worldwide epidemic, as demonstrated by epidemiological and clinical studies. Obesity may lead to the development of a broad spectrum of cardiovascular diseases (CVDs), such as coronary heart disease, hypertension, heart failure, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. In addition to hypertension, there are other cardiometabolic risk factors (CRFs) such as visceral adiposity, dyslipidemia, insulin resistance, diabetes, elevated levels of fibrinogen and C-reactive protein, and others, all of which increase the risk of CVD events. The mechanisms involved between obesity and CVD mainly include insulin resistance, oxidative stress, inflammation, and adipokine dysregulation, which cause maladaptive structural and functional alterations of the heart, particularly left-ventricular remodeling and diastolic dysfunction. Natural products of plants provide a diversity of nutrients and different bioactive compounds, including phenolics, flavonoids, terpenoids, carotenoids, anthocyanins, vitamins, minerals, fibers, and others, which possess a wide range of biological activities including antihypertensive, antilipidemic, antidiabetic, and other activities, thus conferring cardiometabolic benefits. In this review, we discuss the main therapeutic interventions using extracts from herbs and plants in preclinical and clinical trials with protective properties targeting CRFs. Molecular mechanisms and therapeutic targets of herb and plant extracts for the prevention and treatment of CRFs are also reviewed.
RESUMEN
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.