Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 332-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25664743

RESUMEN

The crystal structure of the SAV1646 protein from the pathogenic microorganism Staphylococcus aureus has been determined at 1.7 Šresolution. The 106-amino-acid protein forms a two-layer sandwich with α/ß topology. The protein molecules associate as dimers in the crystal and in solution, with the monomers related by a pseudo-twofold rotation axis. A sequence-homology search identified the protein as a member of a new subfamily of yet uncharacterized bacterial `ribosome-associated' proteins with at least 13 members to date. A detailed analysis of the crystal protein structure along with the genomic structure of the operon containing the sav1646 gene allowed a tentative functional model of this protein to be proposed. The SAV1646 dimer is assumed to form a complex with ribosomal proteins L21 and L27 which could help to complete the assembly of the large subunit of the ribosome.


Asunto(s)
Proteínas Bacterianas/química , Staphylococcus aureus/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Proteínas Ribosómicas/metabolismo , Alineación de Secuencia , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
2.
BMC Struct Biol ; 11: 27, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21615954

RESUMEN

BACKGROUND: Alkyl hydroperoxidase activity provides an important antioxidant defense for bacterial cells. The catalytic mechanism requires two peroxidases, AhpC and AhpD, where AhpD plays the role of an essential adaptor protein. RESULTS: The crystal structure of a putative AhpD from Pseudomonas aeruginosa has been determined at 1.9 Å. The protein has an all-helical fold with a chain topology similar to a known AhpD from Mycobacterium tuberculosis despite a low overall sequence identity of 9%. A conserved two α-helical motif responsible for function is present in both. However, in the P. aeruginosa protein, helices H3, H4 of this motif are located at the N-terminal part of the chain, while in M. tuberculosis AhpD, the corresponding helices H8, H9 are situated at the C-terminus. Residues 24-62 of the putative catalytic region of P. aeruginosa have a higher sequence identity of 33% where the functional activity is supplied by a proton relay system of five residues, Glu36, Cys48, Tyr50, Cys51, and His55, and one structural water molecule. A comparison of five other related hypothetical proteins from various species, assigned to the alkyl hydroperoxidase D-like protein family, shows they contain the same conserved structural motif and catalytic sequence Cys-X-X-Cys. We have shown that AhpD from P. aeruginosa exhibits a weak ability to reduce H(2)O(2) as tested using a ferrous oxidation-xylenol orange (FOX) assay, and this activity is blocked by thiol alkylating reagents. CONCLUSION: Thus, this hypothetical protein was assigned to the AhpD-like protein family with peroxidase-related activity. The functional relationship of specific oligomeric structures of AhpD-like structural family is discussed.


Asunto(s)
Proteínas Bacterianas/química , Peroxirredoxinas/química , Pseudomonas aeruginosa/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Pliegue de Proteína , Pseudomonas aeruginosa/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-21505237

RESUMEN

The rational design of novel antibiotics for bacteria involves the identification of inhibitors for enzymes involved in essential biochemical pathways in cells. In this study, the cloning, expression, purification, crystallization and structure of the enzyme peptidyl-tRNA hydrolase from Francisella tularensis, the causative agent of tularemia, was performed. The structure of F. tularensis peptidyl-tRNA hydrolase is comparable to those of other bacterial peptidyl-tRNA hydrolases, with most residues in the active site conserved amongst the family. The resultant reagents, structural data and analyses provide essential information for the structure-based design of novel inhibitors for this class of proteins.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Francisella tularensis/enzimología , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína
5.
Biometals ; 15(2): 121-31, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12046920

RESUMEN

Uptake of iron complexes into the gram-negative bacterial cell requires highly specific outer membrane receptors and specific ATP-dependent (ATP-Binding-Cassette (ABC)) transport systems located in the inner membrane. The latter type of import system is characterized by a periplasmic binding protein (BP), integral membrane proteins, and membrane-associated ATP-hydrolyzing proteins. In gram-positive bacteria lacking the periplasmic space, the binding proteins are lipoproteins tethered to the cytoplasmic membrane. To date, there is little structural information about the components of ABC transport systems involved in iron complex transport. The recently determined structure of the Escherichia coli periplasmic ferric siderophore binding protein FhuD is unique for an ABC transport system (Clarke et al. 2000). Unlike other BP's, FhuD has two domains connected by a long alpha-helix. The ligand binds in a shallow pocket between the two domains. In vivo and in vitro analysis of single amino acid mutants of FhuD identified several residues that are important for proper functioning of the protein. In this study, the mutated residues were mapped to the protein structure to define special areas and specific amino acid residues in E. coli FhuD that are vital for correct protein function. A number of these important residues were localized in conserved regions according to a multiple sequence alignment of E. coli FhuD with other BP's that transport siderophores, heme, and vitamin B12. The alignment and structure prediction of these polypeptides indicate that they form a distinct family of periplasmic binding proteins.


Asunto(s)
Secuencia Conservada/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Compuestos Férricos/metabolismo , Ácidos Hidroxámicos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Evolución Molecular , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Unión Periplasmáticas/química , Fenotipo , Filogenia
6.
J Biol Chem ; 277(16): 13966-72, 2002 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-11805094

RESUMEN

Siderophore-binding proteins play an essential role in the uptake of iron in many Gram-positive and Gram-negative bacteria. FhuD is an ATP-binding cassette-type (ABC-type) binding protein involved in the uptake of hydroxamate-type siderophores in Escherichia coli. Structures of FhuD complexed with the antibiotic albomycin, the fungal siderophore coprogen and the drug Desferal have been determined at high resolution by x-ray crystallography. FhuD has an unusual bilobal structure for a periplasmic ligand binding protein, with two mixed beta/alpha domains connected by a long alpha-helix. The binding site for hydroxamate-type ligands is composed of a shallow pocket that lies between these two domains. Recognition of siderophores primarily occurs through interactions between the iron-hydroxamate centers of each siderophore and the side chains of several key residues in the binding pocket. Rearrangements of side chains within the binding pocket accommodate the unique structural features of each siderophore. The backbones of the siderophores are not involved in any direct interactions with the protein, demonstrating how siderophores with considerable chemical and structural diversity can be bound by FhuD. For albomycin, which consists of an antibiotic group attached to a hydroxamate siderophore, electron density for the antibiotic portion was not observed. Therefore, this study provides a basis for the rational design of novel bacteriostatic agents, in the form of siderophore-antibiotic conjugates that can act as "Trojan horses," using the hydroxamate-type siderophore uptake system to actively deliver antibiotics directly into targeted pathogens.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ferricromo/farmacología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Unión Periplasmáticas , Sideróforos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Ferricromo/análogos & derivados , Hierro/metabolismo , Ligandos , Modelos Químicos , Modelos Moleculares , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA