Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255850

RESUMEN

The S100B protein is abundant in the nervous system, mainly in astrocytes, and is also present in other districts. Among these, the adipose tissue is a site of concentration for the protein. In the light of consistent research showing some associations between S100B and adipose tissue in the context of obesity, metabolic disorders, and diabetes, this review tunes the possible role of S100B in the pathogenic processes of these disorders, which are known to involve the adipose tissue. The reported data suggest a role for adipose S100B in obesity/diabetes processes, thus putatively re-proposing the role played by astrocytic S100B in neuroinflammatory/neurodegenerative processes.


Asunto(s)
Diabetes Mellitus , Humanos , Obesidad , Adiposidad , Tejido Adiposo , Astrocitos , Subunidad beta de la Proteína de Unión al Calcio S100
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298554

RESUMEN

S100B is a calcium-binding protein mainly concentrated in astrocytes in the nervous system. Its levels in biological fluids are recognized as a reliable biomarker of active neural distress, and more recently, mounting evidence points to S100B as a Damage-Associated Molecular Pattern molecule, which, at high concentration, triggers tissue reactions to damage. S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease. In addition, in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic and vascular acute neural injury, epilepsy, and inflammatory bowel disease, alteration of S100B levels correlates with the occurrence of clinical and/or toxic parameters. In general, overexpression/administration of S100B worsens the clinical presentation, whereas deletion/inactivation of the protein contributes to the amelioration of the symptoms. Thus, the S100B protein may be proposed as a common pathogenic factor in different disorders, sharing different symptoms and etiologies but appearing to share some common pathogenic processes reasonably attributable to neuroinflammation.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Subunidad beta de la Proteína de Unión al Calcio S100 , Humanos , Biomarcadores/metabolismo , Enfermedad de Parkinson/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982288

RESUMEN

S100B is an astrocytic cytokine that has been shown to be involved in several neurodegenerative diseases. We used an astrocytoma cell line (U373 MG) silenced for S100B, and stimulated it with amyloid beta-peptide (Aß) as a known paradigm factor for astrocyte activation, and showed that the ability of the cell (including the gene machinery) to express S100B is a prerequisite for inducing reactive astrocytic features, such as ROS generation, NOS activation and cytotoxicity. Our results showed that control astrocytoma cell line exhibited overexpression of S100B after Aß treatment, and subsequently cytotoxicity, increased ROS generation and NOS activation. In contrast, cells silenced with S100B were essentially protected, consistently reducing cell death, significantly decreasing oxygen radical generation and nitric oxide synthase activity. The conclusive aim of the present study was to show a causative linkage between the cell expression of S100B and induction of astrocyte activation processes, such as cytotoxicity, ROS and NOS activation.


Asunto(s)
Péptidos beta-Amiloides , Astrocitoma , Humanos , Péptidos beta-Amiloides/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Línea Celular , Óxido Nítrico Sintasa/metabolismo , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitos/metabolismo , Óxido Nítrico/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768570

RESUMEN

This in vivo study in mice addresses the relationship between the biodiversity of the microbiota and the levels of S100B, a protein present in enteroglial cells, but also in foods such as milk. A positive significant correlation was observed between S100B levels and Shannon values, which was reduced after treatment with Pentamidine, an inhibitor of S100B function, indicating that the correlation was influenced by the modulation of S100B activity. Using the bootstrap average method based on the distribution of the S100B concentration, three groups were identified, exhibiting a significant difference between the microbial profiles. Operational taxonomic units, when analyzed by SIMPER analysis, showed that genera regarded to be eubiotic were mainly concentrated in the intermediate group, while genera potentially harboring pathobionts often appeared to be more concentrated in groups where the S100B amounts were very low or high. Finally, in a pilot experiment, S100B was administered orally, and the microbial profiles appeared to be modified accordingly. These data may open novel perspectives involving the possibility of S100B-mediated regulation in the intestinal microbiota.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Pentamidina/farmacología , Biodiversidad , ARN Ribosómico 16S/genética , Subunidad beta de la Proteína de Unión al Calcio S100
5.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948360

RESUMEN

S100B is an astrocytic protein behaving at high concentration as a damage-associated molecular pattern molecule. A direct correlation between the increased amount of S100B and inflammatory processes has been demonstrated, and in particular, the inhibitor of S100B activity pentamidine has been shown to ameliorate clinical scores and neuropathologic-biomolecular parameters in the relapsing-remitting experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. This study investigates the effect of arundic acid (AA), a known inhibitor of astrocytic S100B synthesis, in the chronic experimental autoimmune encephalomyelitis, which is another mouse model of multiple sclerosis usually studied. By the daily evaluation of clinical scores and neuropathologic-molecular analysis performed in the spinal cord, we observed that the AA-treated group showed lower severity compared to the vehicle-treated mice, particularly in the early phase of disease onset. We also observed a significant reduction of astrocytosis, demyelination, immune infiltrates, proinflammatory cytokines expression and enzymatic oxidative reactivity in the AA-treated group. Overall, our results reinforce the involvement of S100B in the development of animal models of multiple sclerosis and propose AA targeting the S100B protein as a focused potential drug to be considered for multiple sclerosis treatment.


Asunto(s)
Caprilatos/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Subunidad beta de la Proteína de Unión al Calcio S100/antagonistas & inhibidores , Animales , Caprilatos/farmacología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Esclerosis Múltiple/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
6.
Nutr Neurosci ; 21(6): 447-454, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28393656

RESUMEN

BACKGROUND: Oxidative stress has long been linked to neuronal cell death in many neurodegenerative diseases. Antioxidant conventional supplements are poorly effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Hence the use of molecules extracted from plants and fruits such as phenolics, flavonoids, and terpenoids compounds constitute a new wave of antioxidant therapies to defend against free radicals. OBJECTIVE: In this study we examined the effects of punicalagin, a ellagitannin isolated from the pomegranate juice, on a rat adrenal pheochromocytoma cell line, treated with hydrogen peroxide, evaluating the viability, oxidation potential, mitochondrial function, and eventual apoptosis. METHODS: This study was performed on PC12 cells pretreated with punicalagin (0.5, 1, 5, 10 e 20 µM) 24 hours before of the damage by hydrogen peroxide (H2O2). H2O2 concentration (300 µM) used in our study was determined by preliminary experiments of time course. The cell viability and ROS production were evaluated by MTS assay and cytofluorometry assays, respectively. Subsequently, the number of apoptotic-positive cells and mitochondrial transmembrane potential, were measured by flow cytometry, in the same experimental paradigm. Finally, the expression of Bax and enzymatic activity of Caspase 3, some of the principle actors of programmed cell death, were investigated by semiquantitative PCR and utilizing a colorimetric assay kit, respectively. RESULTS: We found that pretreatment with punicalagin protected the cells from H2O2-induced damage. In particular, the protective effect seemed to be correlated with a control both in radical oxygen species production and in mitochondrial functions. In fact the cells treated with H2O2 showed an altered mitochondrial membrane integrity while the pretreatment with punicalagin retained both the cellular viability and the mitochondrial membrane potential similar to the control. Furthermore, the punicalagin, modulated the apoptotic cascade triggered reducing Bax gene expression and Caspase 3 activity. DISCUSSION: Results of the present study demonstrated a neuroprotective effect of punicalagin on H2O2-induced PC12 cell death, including mitochondria damage and expression of apoptotic gene Bax; therefore we hypothesize a possible prevent role for this molecule in neurodegenerative diseases related to oxidative stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Taninos Hidrolizables/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Caspasa 3/genética , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38846010

RESUMEN

Polyphenols are a class of natural compounds that act as antioxidants, neutralising harmful free radicals that would damage cells and increase the risk of diseases such as cancer, diabetes and heart disease. They also reduce inflammation, which is thought to be at the root of many chronic diseases. We are investigating the photoprotective effects of punicalagin, a type of polyphenolic compound mainly found in pomegranates, against UVA-induced damage in human skin fibroblasts. Punicalagin increases cell viability and reduces the high levels of ROS generated by photooxidative stress through its ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 pathway results in an increase in reduced glutathione, NADH, and subsequently protects mitochondrial respiratory capacity. Integrating molecular and imaging approaches, our results demonstrate a potential cytoprotective effect of punicalagin against UVA-induced skin damage through an anti-apoptotic mechanism.

8.
Antioxidants (Basel) ; 12(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37107196

RESUMEN

This study explores the photoprotective effects of rutin, a bioflavonoid found in some vegetables and fruits, against UVA-induced damage in human skin fibroblasts. Our results show that rutin increases cell viability and reduces the high levels of ROS generated by photo-oxidative stress (1 and 2 h of UVA exposure). These effects are related to rutin's ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 signaling pathway results in an increase in reduced glutathione and Bcl2/Bax ratio, and the subsequent protection of mitochondrial respiratory capacity. These results demonstrate how rutin may play a potentially cytoprotective role against UVA-induced skin damage through a purely antiapoptotic mechanism.

9.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36829896

RESUMEN

Diabetes-induced oxidative stress induces the development of vascular complications, which are significant causes of morbidity and mortality in diabetic patients. Among these, diabetic retinopathy (DR) is often caused by functional changes in the blood-retinal barrier (BRB) due to harmful oxidative stress events in lipids, proteins, and DNA. Docosahexaenoic acid (DHA) has a potential therapeutic effect against hyperglycemia-induced oxidative damage and apoptotic pathways in the main constituents of BRB, retinal pigment epithelium cells (ARPE-19). Effective antioxidant response elicited by DHA is driven by the activation of the Nrf2/Nqo1 signaling cascade, which leads to the formation of NADH, a reductive agent found in the cytoplasm. Nrf2 also induces the expression of genes encoding enzymes involved in lipid metabolism. This study, therefore, aims at investigating the modulation of lipid metabolism induced by high-glucose (HG) on ARPE-19 cells through the integration of metabolic imaging and molecular biology to provide a comprehensive functional and molecular characterization of the mechanisms activated in the disease, as well the therapeutic role of DHA. This study shows that HG augments RPE metabolic processes by enhancing lipid metabolism, from fatty acid uptake and turnover to lipid biosynthesis and ß-oxidation. DHA exerts its beneficial effect by ameliorating lipid metabolism and reducing the increased ROS production under HG conditions. This investigation may provide novel insight for formulating novel treatments for DR by targeting lipid metabolism pathways.

10.
Biomedicines ; 10(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35203712

RESUMEN

Idebenone is a ubiquinone short-chain synthetic analog with antioxidant properties, which is believed to restore mitochondrial ATP synthesis. As such, idebenone is investigated in numerous clinical trials for diseases of mitochondrial aetiology and it is authorized as a drug for the treatment of Leber's hereditary optic neuropathy. Mitochondria of retinal pigment epithelium (RPE) are particularly vulnerable to oxidative damage associated with cellular senescence. Therefore, the aim of this study was to explore idebenone's cytoprotective effect and its underlying mechanism. We used a human-RPE cell line (ARPE-19) exposed to idebenone pre-treatment for 24 h followed by conditions inducing H2O2 oxidative damage for a further 24 h. We found that idebenone: (a) ameliorated H2O2-lowered cell viability in the RPE culture; (b) activated Nrf2 signaling pathway by promoting Nrf2 nuclear translocation; (c) increased Bcl-2 protein levels, leaving unmodified those of Bax, thereby reducing the Bax/Bcl-2 ratio; (d) maintained the mitochondrial membrane potential (ΔΨm) at physiological levels, preserving the functionality of mitochondrial respiratory complexes and counteracting the excessive production of ROS; and (e) reduced mitochondrial cytochrome C-mediated caspase-3 activity. Taken together, our findings show that idebenone protects RPE from oxidative damage by modulating the intrinsic mitochondrial pathway of apoptosis, suggesting its possible role in retinal epitheliopathies associated with mitochondrial dysfunction.

11.
Antioxidants (Basel) ; 11(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35739970

RESUMEN

Diabetes-induced oxidative stress leads to the onset of vascular complications, which are major causes of disability and death in diabetic patients. Among these, diabetic retinopathy (DR) often arises from functional alterations of the blood-retinal barrier (BRB) due to damaging oxidative stress reactions in lipids, proteins, and DNA. This study aimed to investigate the impact of the ω3-polyunsaturated docosahexaenoic acid (DHA) on the regulation of redox homeostasis in the human retinal pigment epithelial (RPE) cell line (ARPE-19) under hyperglycemic-like conditions. The present results show that the treatment with DHA under high-glucose conditions activated erythroid 2-related factor Nrf2, which orchestrates the activation of cellular antioxidant pathways and ultimately inhibits apoptosis. This process was accompanied by a marked increase in the expression of NADH (Nicotinamide Adenine Dinucleotide plus Hydrogen) Quinone Oxidoreductase 1 (Nqo1), which is correlated with a contextual modulation and intracellular re-organization of the NAD+/NADH redox balance. This investigation of the mechanisms underlying the impairment induced by high levels of glucose on redox homeostasis of the BRB and the subsequent recovery provided by DHA provides both a powerful indicator for the detection of RPE cell impairment as well as a potential metabolic therapeutic target for the early intervention in its treatment.

12.
Antioxidants (Basel) ; 10(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572785

RESUMEN

The retinal pigment epithelium (RPE) is a densely pigmented, monostratified epithelium that provides metabolic and functional support to the outer segments of photoreceptors. Endogenous or exogenous oxidative stimuli determine a switch from physiological to pathological conditions, characterized by an increase of intracellular levels of reactive oxygen species (ROS). Accumulating evidence has elucidated that punicalagin (PUN), the major ellagitannin in pomegranate, is a potent antioxidant in several cell types. The present study aimed to investigate the protective effect of PUN on mitochondrial dysfunction associated with hydrogen peroxide (H2O2)-induced oxidative stress. For this purpose, we used a human RPE cell line (ARPE-19) exposed to H2O2 for 24 h. The effects of PUN pre-treatment (24 h) were examined on cell viability, mitochondrial ROS levels, mitochondrial membrane potential, and respiratory chain complexes, then finally on caspase-3 enzymatic activity. The results showed that supplementation with PUN: (a) significantly increased cell viability; (b) kept the mitochondrial membrane potential (ΔΨm) at healthy levels and limited ROS production; (c) preserved the activity of respiratory complexes; (d) reduced caspase-3 activity. In conclusion, due to its activity in helping mitochondrial functions, reducing oxidative stress, and subsequent induction of cellular apoptosis, PUN might be considered a useful nutraceutical agent in the treatment of oxidation-associated disorders of RPE.

13.
Neurosci Biobehav Rev ; 127: 446-458, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33971224

RESUMEN

S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Astrocitos , Biomarcadores , Humanos , Subunidad beta de la Proteína de Unión al Calcio S100
14.
Antioxidants (Basel) ; 9(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498245

RESUMEN

The oxidative damage of the retinal pigment epithelium (RPE) is the early event that underlies the pathogenesis of maculopathies. Numerous studies have shown that punicalagin (PUN), a polyphenol present in pomegranate, can protect several cell types from oxidative stress. Our study aims to establish if PUN protects RPE from UV radiation-induced oxidative damage. We used an experimental model which involves the use of a human-RPE cell line (ARPE-19) exposed to UV-A radiation for 1, 3, and 5 hours. ARPE-19 cells were pre-treated with PUN (24 h) followed by UV-A irradiation; controls were treated identically, except for UV-A. Effects of pre-treatment with PUN on cell viability, intracellular reactive oxygen species ROS levels, modulation of Nrf2 and its antioxidant target genes, and finally apoptosis were examined. We found that pre­treatment with PUN: (1) antagonized the decrease in cell viability and reduced high levels of ROS associated with UV-A-induced oxidative stress; (2) activated Nrf2 signaling pathway by promoting Nrf2 nuclear translocation and upregulating its downstream antioxidant target genes (HO-1 and NQO1); (3) induced an anti-apoptotic effect by decreasing Bax/Bcl-2 ratio. These findings provide the first evidence that PUN can prevent UV-A-induced oxidative damage in RPE, offering itself as a possible antioxidant agent capable of contrasting degenerative eye diseases.

15.
Cells ; 9(3)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197530

RESUMEN

S100B is an astrocytic protein acting either as an intracellular regulator or an extracellular signaling molecule. A direct correlation between increased amount of S100B and demyelination and inflammatory processes has been demonstrated. The aim of this study is to investigate the possible role of a small molecule able to bind and inhibit S100B, pentamidine, in the modulation of disease progression in the relapsing-remitting experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. By the daily evaluation of clinical scores and neuropathologic-molecular analysis performed in the central nervous system, we observed that pentamidine is able to delay the acute phase of the disease and to inhibit remission, resulting in an amelioration of clinical score when compared with untreated relapsing-remitting experimental autoimmune encephalomyelitis mice. Moreover, we observed a significant reduction of proinflammatory cytokines expression levels in the brains of treated versus untreated mice, in addition to a reduction of nitric oxide synthase activity. Immunohistochemistry confirmed that the inhibition of S100B was able to modify the neuropathology of the disease, reducing immune infiltrates and partially protecting the brain from the damage. Overall, our results indicate that pentamidine targeting the S100B protein is a novel potential drug to be considered for multiple sclerosis treatment.


Asunto(s)
Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Pentamidina/uso terapéutico , Subunidad beta de la Proteína de Unión al Calcio S100/antagonistas & inhibidores , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Esclerosis Múltiple/genética , Pentamidina/farmacología , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
16.
Int J Mol Med ; 43(6): 2523-2531, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31017264

RESUMEN

Docosahexaenoic acid (DHA) is an omega­3 polyunsaturated fatty acid, derived mainly from fish oil. It is well known that DHA is present in high concentrations in nervous tissue and plays an important role in brain development and neuroprotection. However, the molecular mechanisms underlying its role remain to be fully elucidated. In this study, to enhance our understanding of the pathophysiological role of DHA, we investigated the possible neuroprotective mechanisms of action of DHA against hydrogen peroxide (H2O2)­induced oxidative damage in a rat pheochromocytoma cell line (PC12). Specifically, we evaluated the viability, oxidation potential, and the expression and production of antioxidant/cytoprotective enzymes, and eventual apoptosis. We found that pre­treatment with DHA (24 h) protected the cells from H2O2­induced oxidative damage. In particular, pre­treatment with DHA: i) Antagonized the consistent decrease in viability observed following exposure to H2O2 for 24 h; ii) reduced the high levels of intracellular reactive oxygen species (ROS) associated with H2O2­induced oxidative stress; iii) increased the intracellular levels of enzymatic antioxidants [superoxide dismutase (SOD) and glutathione peroxidase (GSH­Px)] both under basal conditions and following H2O2 exposure; iv) augmented the intracellular levels of reduced glutathione (GSH) and ascorbic acid, while it reduced the malondialdehyde (MDA) levels under conditions of oxidative stress; v) upregulated the expression of nuclear factor (erythroid­derived 2)­like 2 (NFE2L2) and its downstream target protein, heme­oxygenase­1 (HO­1); and vi) induced an anti­apoptotic effect by decreasing Bax and increasing Bcl2 expression. These findings provide evidence suggesting that DHA is able to prevent H2O2­induced oxidative damage to PC12 cells, which is attributed to its antioxidant and anti­apoptotic effects via the regulation NFE2L2/HO­1 signaling. Therefore, DHA may play protective role in neurodegenerative diseases associated with oxidative stress.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Ácidos Docosahexaenoicos/metabolismo , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Fármacos Neuroprotectores/metabolismo , Células PC12 , Ratas , Superóxido Dismutasa/metabolismo
17.
Biochim Biophys Acta ; 1774(10): 1299-306, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17881306

RESUMEN

This study examines the functional and structural effects of amino acid substitution at alpha(1)beta(2) interface of Hb Santa Clara (beta 97His-->Asn). We have characterized the variation by a combination of electrospray ionisation mass spectrometry and DNA sequence analysis followed by oxygen-binding experiments. Functional studies outlined an increased oxygen affinity, reduced effect of organic phosphates and a reduced Bohr effect with respect to HbA. In view of the primary role of this interface in the cooperative quaternary transition from the T to R conformational state, a theoretical three-dimensional model of Hb Santa Clara was generated. Structural investigations suggest that replacement of Asn for His beta 97 results in a significant stabilization of the high affinity R-state of the haemoglobin molecule with respect to the low affinity T-state. The role of beta FG4 position has been further examined by computational models of known beta FG4 variants, namely Hb Malmö (beta 97His-->Gln), Hb Wood (beta 97His-->Leu), Hb Nagoya (beta 97His-->Pro) and Hb Moriguchi (beta 97His-->Tyr). These findings demonstrate that, among the various residues at the alpha(1)beta(2) (and alpha(2)beta(1)) intersubunit interface, His beta FG4 contributes significantly to the quaternary constraints that are responsible for the low oxygen affinity of human deoxyhaemoglobin.


Asunto(s)
Asparagina/genética , Variación Genética , Hemoglobinas Anormales/química , Hemoglobinas Anormales/genética , Histidina/genética , Adulto , Asparagina/fisiología , Sitios de Unión/genética , Femenino , Hemoglobinas Anormales/fisiología , Histidina/fisiología , Humanos , Lactante , Modelos Moleculares , Oxígeno/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
18.
J Neurochem ; 107(4): 1070-82, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18990116

RESUMEN

Amyloid beta-peptide (Abeta) plays a fundamental role in the pathogenesis of Alzheimer's disease. We recently reported that the redox state of the methionine residue in position 35 of amyloid beta-peptide (Abeta) 1-42 (Met35) strongly affects the peptide's ability to trigger apoptosis and is thus a major determinant of its neurotoxicity. Dysregulation of intracellular Ca(2+) homeostasis resulting in the activation of pro-apoptotic pathways has been proposed as a mechanism underlying Abeta toxicity. Therefore, we investigated correlations between the Met35 redox state, Abeta toxicity, and altered intracellular Ca(2+) signaling in human neuroblastoma IMR32 cells. Cells incubated for 6-24 h with 10 microM Abeta1-42 exhibited significantly increased KCl-induced Ca(2+) transient amplitudes and resting free Ca(2+) concentrations. Nifedipine-sensitive Ca(2+) current densities and Ca(v)1 channel expression were markedly enhanced by Abeta1-42. None of these effects were observed when cells were exposed to Abeta containing oxidized Met35 (Abeta1-42(Met35-Ox)). Cell pre-treatment with the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (1 microM) or the Ca(v)1 channel blocker nifedipine (5 microM) significantly attenuated Abeta1-42-induced apoptosis but had no effect on Abeta1-42(Met35-Ox) toxicity. Collectively, these data suggest that reduced Met35 plays a critical role in Abeta1-42 toxicity by rendering the peptide capable of disrupting intracellular Ca(2+) homeostasis and thereby provoking apoptotic cell death.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Líquido Extracelular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Metionina/metabolismo , Fragmentos de Péptidos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Etiquetado Corte-Fin in Situ/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Neuroblastoma/metabolismo , Nifedipino/farmacología , Oxidación-Reducción , Técnicas de Placa-Clamp , Cloruro de Potasio/farmacología
19.
Mol Med Rep ; 17(4): 5538-5543, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29393496

RESUMEN

Long-term exposure to ultraviolet (UV) radiation is associated with pathological alterations of the retinal pigment epithelium (RPE). It has been indicated that Cortistatin (CST) and somatostatin (SST) are able to inhibit the neurodegeneration of the RPE associated with diabetic retinopathy and retinal ischemia via activation of SST receptors (SSTRs). To the best of our knowledge, the present study indicated for the first time that treatment with UV­A (30 and 60 min) causes an increase of CST expression, rather than SST, which was linked with the upregulation of STTR3,4,5 subtype receptor gene expression levels. The study revealed that: i) SST and CST mRNA expression were both detected under basal conditions in a human retinal pigment epithelial cell line (Arpe­19); ii) SST expression remained constant from baseline to 1 h of UV­A treatment; iii) CST mRNA expression levels were 80 times increased compared with time 0 and after 30 min of exposition to ultraviolet irradiation; iv) SSTR1, SSTR2 mRNA and low levels of SSTR4 were expressed in basal conditions, whereas SSTR3 and SSTR5 mRNA were not detected under the same conditions; and v) only SSTR3, SSTR4 and SSTR5 were overexpressed after UV­A treatment, although in a different way. In conclusion, the findings provide reasonable evidence to support the pathophysiological role of the CST/SST/SSTRs system in the adaptive response of the RPE exposed to UV­A radiation.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Neuropéptidos/genética , Receptores de Somatostatina/genética , Activación Transcripcional/efectos de la radiación , Rayos Ultravioleta , Línea Celular , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Humanos , Familia de Multigenes , Receptores de Somatostatina/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
20.
Mol Med Rep ; 14(4): 3485-9, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27573029

RESUMEN

Pathological alterations to the retinal pigment epithelium underlie several eye diseases, which lead to visual impairment and even blindness. Exposure to ultraviolet (UV) radiation is associated with some skin and ocular pathologies; UV radiation may induce DNA breakdown and cause cellular damage through the production of reactive oxygen species (ROS), thus leading to programmed cell death. The present study aimed to investigate the production of ROS and the gene expression levels of anti­ and proapoptotic proteins [B­cell lymphoma 2 (Bcl­2), Bcl­2­associated X protein (Bax) and caspase­3] in human retinal pigment epithelial cells (ARPE­19) treated with UV­A for 5 h consecutively. The results demonstrated that prolonged exposure to UV­A induced: i) Cell death, the decrease in cell viability was time­dependent and reached statistical significance after 3 h; ii) a significant and substantial increase in ROS levels that remained constant for the duration of the experiment, the levels were significantly increased after 1 h of exposure; iii) an activation of apoptotic genes (Bax and caspase­3) after 1 h of treatment, which was accompanied by a decrease in the anti­apoptotic gene Bcl­2; and iv) a loss of apoptotic signals and a rapid decrease in cellular viability after 3 h of consecutive treatment. These processes may trigger necrosis, which was observed in the cells following treatment with UV­A for 5 consecutive hours. In conclusion, the present study is the first, to the best of our knowledge, to provide in vitro evidence regarding the sequence of events that underlie the cellular damage induced by prolonged UV­A radiation, starting from the first 30 min of treatment. UV­A radiation resulted in the activation of apoptotic events, and subsequently led to irreversible cell necrosis.


Asunto(s)
Caspasa 3/genética , Supervivencia Celular/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Genes bcl-2/efectos de la radiación , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de la radiación , Proteína X Asociada a bcl-2/genética , Apoptosis/efectos de la radiación , Línea Celular , Humanos , Estrés Oxidativo/efectos de la radiación , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA