Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Annu Rev Biochem ; 82: 267-93, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23746256

RESUMEN

Predicting protein-binding affinities of small molecules, even closely related ones, is a formidable challenge in biomolecular recognition and medicinal chemistry. A thermodynamic approach to optimizing affinity in protein-ligand interactions requires knowledge and understanding of how altering the structure of a small molecule will be manifested in protein-binding enthalpy and entropy changes; however, there is a relative paucity of such detailed information. In this review, we examine two strategies commonly used to increase ligand potency. The first of these involves introducing a cyclic constraint to preorganize a small molecule in its biologically active conformation, and the second entails adding nonpolar groups to a molecule to increase the amount of hydrophobic surface that is buried upon binding. Both of these approaches are motivated by paradigms suggesting that protein-binding entropy changes should become more favorable, but paradoxes can emerge that defy conventional wisdom.


Asunto(s)
Conformación Molecular , Proteínas/química , Termodinámica , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Unión Proteica , Conformación Proteica , Proteínas/metabolismo
2.
Bioorg Med Chem Lett ; 24(14): 3164-7, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24856058

RESUMEN

In order to probe the energetics associated with a putative cation-π interaction, thermodynamic parameters are determined for complex formation between the Grb2 SH2 domain and tripeptide derivatives of RCO-pTyr-Ac6c-Asn wherein the R group is varied to include different alkyl, cycloalkyl, and aryl groups. Although an indole ring is reputed to have the strongest interaction with a guanidinium ion, binding free energies, ΔG°, for derivatives of RCO-pTyr-Ac6c-Asn bearing cyclohexyl and phenyl groups were slightly more favorable than their indolyl analog. Crystallographic analysis of two complexes reveals that test ligands bind in similar poses with the notable exception of the relative orientation and proximity of the phenyl and indolyl rings relative to an arginine residue of the domain. These spatial orientations are consistent with those observed in other cation-π interactions, but there is no net energetic benefit to such an interaction in this biological system. Accordingly, although cation-π interactions are well documented as important noncovalent forces in molecular recognition, the energetics of such interactions may be mitigated by other nonbonded interactions and solvation effects in protein-ligand associations.


Asunto(s)
Proteína Adaptadora GRB2/química , Oligopéptidos/química , Proteína Adaptadora GRB2/antagonistas & inhibidores , Ligandos , Modelos Moleculares , Estructura Molecular , Oligopéptidos/farmacología , Relación Estructura-Actividad , Termodinámica
3.
J Am Chem Soc ; 133(46): 18518-21, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22007755

RESUMEN

Thermodynamic parameters were determined for complex formation between the Grb2 SH2 domain and Ac-pTyr-Xaa-Asn derived tripeptides in which the Xaa residue is an α,α-cycloaliphatic amino acid that varies in ring size from three- to seven-membered. Although the six- and seven-membered ring analogs are approximately equipotent, binding affinities of those having three- to six-membered rings increase incrementally with ring size because increasingly more favorable binding enthalpies dominate increasingly less favorable binding entropies, a finding consistent with an enthalpy-driven hydrophobic effect. Crystallographic analysis reveals that the only significant differences in structures of the complexes are in the number of van der Waals contacts between the domain and the methylene groups in the Xaa residues. There is a positive correlation between buried nonpolar surface area and binding free energy and enthalpy, but not with ΔC(p). Displacing a water molecule from a protein-ligand interface is not necessarily reflected in a favorable change in binding entropy. These findings highlight some of the fallibilities associated with commonly held views of relationships of structure and energetics in protein-ligand interactions and have significant implications for ligand design.


Asunto(s)
Modelos Moleculares , Proteínas/química , Termodinámica , Cristalografía por Rayos X , Ligandos , Estructura Molecular , Proteínas/metabolismo , Propiedades de Superficie
4.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 10): 1101-15, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20944243

RESUMEN

Structures of the Grb2 SH2 domain complexed with a series of pseudopeptides containing flexible (benzyl succinate) and constrained (aryl cyclopropanedicarboxylate) replacements of the phosphotyrosine (pY) residue in tripeptides derived from Ac-pYXN-NH(2) (where X = V, I, E and Q) were elucidated by X-ray crystallography. Complexes of flexible/constrained pairs having the same pY + 1 amino acid were analyzed in order to ascertain what structural differences might be attributed to constraining the phosphotyrosine replacement. In this context, a given structural dissimilarity between complexes was considered to be significant if it was greater than the corresponding difference in complexes coexisting within the same asymmetric unit. The backbone atoms of the domain generally adopt a similar conformation and orientation relative to the ligands in the complexes of each flexible/constrained pair, although there are some significant differences in the relative orientations of several loop regions, most notably in the BC loop that forms part of the binding pocket for the phosphate group in the tyrosine replacements. These variations are greater in the set of complexes of constrained ligands than in the set of complexes of flexible ligands. The constrained ligands make more direct polar contacts to the domain than their flexible counterparts, whereas the more flexible ligand of each pair makes more single-water-mediated contacts to the domain; there was no correlation between the total number of protein-ligand contacts and whether the phosphotyrosine replacement of the ligand was preorganized. The observed differences in hydrophobic interactions between the complexes of each flexible/constrained ligand pair were generally similar to those observed upon comparing such contacts in coexisting complexes. The average adjusted B factors of the backbone atoms of the domain and loop regions are significantly greater in the complexes of constrained ligands than in the complexes of the corresponding flexible ligands, suggesting greater thermal motion in the crystalline state in the former complexes. There was no apparent correlation between variations in crystal packing and observed structural differences or similarities in the complexes of flexible and constrained ligands, but the possibility that crystal packing might result in structural variations cannot be rigorously excluded. Overall, it appears that there are more variations in the three-dimensional structure of the protein and the ligand in complexes of the constrained ligands than in those of their more flexible counterparts.


Asunto(s)
Proteína Adaptadora GRB2/química , Fragmentos de Péptidos/química , Unión Proteica , Animales , Cristalización , Cristalografía por Rayos X , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Ligandos , Fragmentos de Péptidos/genética , Unión Proteica/genética , Conformación Proteica , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas/genética , Estereoisomerismo , Relación Estructura-Actividad , Dominios Homologos src/genética
5.
Eur J Med Chem ; 208: 112771, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32916312

RESUMEN

Understanding how making structural changes in small molecules affects their binding affinities for targeted proteins is central to improving strategies for rational drug design. To assess the effects of varying the nature of nonpolar groups upon binding entropies and enthalpies, we designed and prepared a set of Grb2-SH2 domain ligands, Ac-pTyr-Ac6c-Asn-(CH2)n-R, in which the size and electrostatic nature of R groups at the pTyr+3 site were varied. The complexes of these ligands with the Grb2-SH2 domain were evaluated in a series of studies in which the binding thermodynamics were determined using isothermal titration calorimetry, and binding interactions were examined in crystallographic studies of two different complexes. Notably, adding nonpolar groups to the pTyr+3 site leads to higher binding affinities, but the magnitude and energetic origins of these effects vary with the nature of the R substituent. For example, enhancements to binding affinities using aliphatic R groups are driven by more favorable changes in binding entropies, whereas aryl R groups improve binding free energies through a combination of more favorable changes in binding enthalpies and entropies. However, enthalpy/entropy compensation plays a significant role in these associations and mitigates against any significant variation in binding free energies, which vary by only 0.8 kcal•mol-1, with changes in the electrostatic nature and size of the R group. Crystallographic studies show that differences in ΔG° or ΔH° correlate with buried nonpolar surface area, but they do not correlate with the total number of polar or van der Waals contacts. The relative number of ordered water molecules and relative order in the side chains at pTyr+3 correlate with differences in -TΔS°. Overall, these studies show that burial of nonpolar surface can lead to enhanced binding affinities arising from dominating entropy- or enthalpy-driven hydrophobic effects, depending upon the electrostatic nature of the apolar R group.


Asunto(s)
Proteína Adaptadora GRB2/metabolismo , Oligopéptidos/metabolismo , Calorimetría , Cristalografía por Rayos X , Proteína Adaptadora GRB2/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Oligopéptidos/síntesis química , Unión Proteica , Termodinámica , Dominios Homologos src
6.
J Am Chem Soc ; 131(46): 16758-70, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19886660

RESUMEN

Succinate- and cyclopropane-derived phosphotyrosine (pY) replacements were incorporated into a series of Grb2 SH2 binding ligands wherein the pY+1 residue was varied to determine explicitly how variations in ligand preorganization affect binding energetics and structure. The complexes of these ligands with the Grb2 SH2 domain were examined in a series of thermodynamic and structural investigations using isothermal titration calorimetry and X-ray crystallography. The binding enthalpies for all ligands were favorable, and although binding entropies for all ligands having a hydrophobic residue at the pY+1 site were favorable, binding entropies for those having a hydrophilic residue at this site were unfavorable. Preorganized ligands generally bound with more favorable Gibbs energies than their flexible controls, but this increased affinity was the consequence of relatively more favorable binding enthalpies. Unexpectedly, binding entropies of the constrained ligands were uniformly disfavored relative to their flexible controls, demonstrating that the widely held belief that ligand preorganization should result in an entropic advantage is not necessarily true. Crystallographic studies of complexes of several flexible and constrained ligands having the same amino acid at the pY+1 position revealed extensive similarities, but there were some notable differences. There are a greater number of direct polar contacts in complexes of the constrained ligands that correlate qualitatively with their more favorable binding enthalpies and Gibbs energies. There are more single water-mediated contacts between the domain and the flexible ligand of each pair; although fixing water molecules at a protein-ligand interface is commonly viewed as entropically unfavorable, entropies for forming these complexes are favored relative to those of their constrained counterparts. Crystallographic b-factors in the complexes of constrained ligands are greater than those of their flexible counterparts, an observation that seems inconsistent with our finding that entropies for forming complexes of flexible ligands are relatively more favorable. This systematic study highlights the profound challenges and complexities associated with predicting how structural changes in a ligand will affect enthalpies, entropies, and structure in protein-ligand interactions.


Asunto(s)
Entropía , Proteína Adaptadora GRB2/química , Dominios Homologos src , Asparagina/química , Cristalografía por Rayos X , Calor , Ligandos , Conformación Proteica , Protones , Tirosina/química
7.
ACS Med Chem Lett ; 4(11)2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24349642

RESUMEN

Thermodynamic parameters were determined for complex formation between the Grb2 SH2 domain and tripeptides of the general form Ac-pTyr-Xaa-Asn in which the Xaa residue bears a linear alkyl chain varying in length from 1-5 carbon atoms. Binding affinity increases upon adding a methylene group to the Ala derivative, but further chain extension gives no extra enhancement in potency. The thermodynamic signatures of the ethyl and n-propyl derivatives are virtually identical as are those for the n-butyl and n-pentyl analogs. Crystallographic analysis of the complexes reveals a high degree of similarity in the structure of the domain and the bound ligands with the notable exception that there is a gauche interaction in the side chains in the bound conformations of ligands having n-propyl, n-butyl, and n-pentyl groups. However, eliminating this unfavorable interaction by introducing a Z-double bond into the side chain of the n-propyl analog does not result in an increase in affinity. Increases in the amount of nonpolar surface that is buried upon ligand binding correlate with favorable changes in ΔH°, but these are usually offset by corresponding unfavorable changes in -TΔS°; there is little correlation of ΔCp with changes in the amount of buried nonpolar surface.

8.
ACS Med Chem Lett ; 1(8): 448-452, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21116482

RESUMEN

The thermodynamic and structural effects of macrocyclization as a tactic for stabilizing the biologically-active conformation of Grb2 SH2 binding peptides were investigated using isothermal titration calorimetry and x-ray crystallography. 23-Membered macrocycles containing the sequence pYVN were slightly more potent than their linear controls; however, preorganization did not necessarily eventuate in a more favorable binding entropy. Structures of complexes of macrocycle 7 and its acyclic control 8 are similar except for differences in relative orientations of corresponding atoms in the linking moieties of 7 and 8. There are no differences in the number of direct or water-mediated protein-ligand contacts that might account for the less favorable binding enthalpy of 7; however, an intramolecular hydrogen bond between the pY and pY+3 residues in 8 that is absent in 7 may be a factor. These studies highlight the difficulties associated with correlating energetics and structure in protein-ligand interactions.

9.
Arch Biochem Biophys ; 462(1): 47-53, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17466257

RESUMEN

The SH2 domain of growth factor receptor-bound protein 2 (Grb2) has been the focus of numerous studies, primarily because of the important roles it plays in signal transduction. More recently, it has emerged as a useful protein to study the consequences of ligand preorganization upon energetics and structure in protein-ligand interactions. The Grb2-SH2 domain is known to form a domain-swapped dimer, and as part of our investigations toward correlating structure and energetics in biological systems, we examined the effects that domain-swapping dimerization of the Grb2-SH2 domain had upon ligand binding affinities. Isothermal titration calorimetry was performed using Grb2-SH2 in both its monomeric and domain-swapped dimeric forms and a phosphorylated tripeptide AcNH-pTyr-Val-Asn-NH(2) that is similar to the Shc sequence recognized by Grb2-SH2 in vivo. The two binding sites of domain-swapped dimer exhibited a 4- and a 13-fold reduction in ligand affinity compared to monomer. Crystal structures of peptide-bound and uncomplexed forms of Grb2-SH2 domain-swapped dimer were obtained and reveal that the orientation of residues V122, V123, and R142 may influence the conformation of W121, an amino acid that is believed to play an important role in Grb2-SH2 ligand sequence specificity. These findings suggest that domain-swapping of Grb2-SH2 not only results in a lower affinity for a Shc-derived ligand, but it may also affect ligand specificity.


Asunto(s)
Proteína Adaptadora GRB2/química , Sitios de Unión , Calorimetría , Cristalización , Dimerización , Humanos , Cinética , Ligandos , Conformación Molecular , Péptidos/química , Fosfotirosina/química , Unión Proteica , Sensibilidad y Especificidad , Transducción de Señal , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA