Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Blood ; 141(10): 1180-1193, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36542833

RESUMEN

The hematopoietic stem cell (HSC) cycle responds to inflammatory and other proliferative stressors; however, these cells must quickly return to quiescence to avoid exhaustion and maintain their functional integrity. The mechanisms that regulate this return to quiescence are not well understood. Here, we show that tetraspanin CD53 is markedly upregulated in HSCs in response to a variety of inflammatory and proliferative stimuli and that the loss of CD53 is associated with prolonged cycling and reduced HSC function in the context of inflammatory stress. Mechanistically, CD53 promotes the activity of the dimerization partner, RB-like, E2F, and multi-vulva class B (DREAM) transcriptional repressor complex, which downregulates genes associated with cycling and division. Proximity labeling and confocal fluorescence microscopy studies showed that CD53 interacts with DREAM-associated proteins, specifically promoting the interaction between Rbl2/p130 and its phosphatase protein phosphatase 2A (PP2A), effectively stabilizing p130 protein availability for DREAM binding. Together, these data identified a novel mechanism by which stressed HSCs resist cycling.


Asunto(s)
Células Madre Hematopoyéticas , Tetraspanina 25 , Femenino , Humanos , División Celular , Células Madre Hematopoyéticas/metabolismo , Ratones , Tetraspanina 25/metabolismo , Animales
2.
J Acoust Soc Am ; 155(5): 3172-3182, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727552

RESUMEN

Locally resonant elastodynamic metasurfaces for suppressing surface waves have gained popularity in recent years, especially because of their potential in low-frequency applications such as seismic barriers. Their design strategy typically involves tailoring geometrical features of local resonators to attain a desired frequency bandgap through extensive dispersion analyses. In this paper, a systematic design methodology is presented to conceive these local resonators using topology optimization, where frequency bandgaps develop by matching multiple antiresonances with predefined target frequencies. The design approach modifies an individual resonator's response to unidirectional harmonic excitations in the in-plane and out-of-plane directions, mimicking the elliptical motion of surface waves. Once an arrangement of optimized resonators composes a locally resonant metasurface, frequency bandgaps appear around the designed antiresonance frequencies. Numerical investigations analyze three case studies, showing that longitudinal-like and flexural-like antiresonances lead to nonoverlapping bandgaps unless both antiresonance modes are combined to generate a single and wider bandgap. Experimental data demonstrate good agreement with the numerical results, validating the proposed design methodology as an effective tool to realize locally resonant metasurfaces by matching multiple antiresonances such that bandgaps generated as a result of in-plane and out-of-plane surface wave motion combine into wider bandgaps.

3.
Gut ; 72(7): 1340-1354, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36631248

RESUMEN

OBJECTIVE: Increasing evidence implicates mutation-induced protein misfolding and endoplasm reticulum (ER) stress in the pathophysiology of chronic pancreatitis (CP). The paucity of animal models harbouring genetic risk variants has hampered our understanding of how misfolded proteins trigger CP. We previously showed that pancreatic triglyceride lipase (PNLIP) p.T221M, a variant associated with steatorrhoea and possibly CP in humans, misfolds and elicits ER stress in vitro suggesting proteotoxicity as a potential disease mechanism. Our objective was to create a mouse model to determine if PNLIP p.T221M causes CP and to define the mechanism. DESIGN: We created a mouse model of Pnlip p.T221M and characterised the structural and biochemical changes in the pancreas aged 1-12 months. We used multiple methods including histochemistry, immunostaining, transmission electron microscopy, biochemical assays, immunoblotting and qPCR. RESULTS: We demonstrated the hallmarks of human CP in Pnlip p.T221M homozygous mice including progressive pancreatic atrophy, acinar cell loss, fibrosis, fatty change, immune cell infiltration and reduced exocrine function. Heterozygotes also developed CP although at a slower rate. Immunoblot showed that pancreatic PNLIP T221M misfolded as insoluble aggregates. The level of aggregates in homozygotes declined with age and was much lower in heterozygotes at all ages. The Pnlip p.T221M pancreas had increased ER stress evidenced by dilated ER, increased Hspa5 (BiP) mRNA abundance and a maladaptive unfolded protein response leading to upregulation of Ddit3 (CHOP), nuclear factor-κB and cell death. CONCLUSION: Expression of PNLIP p.T221M in a preclinical mouse model results in CP caused by ER stress and proteotoxicity of misfolded mutant PNLIP.


Asunto(s)
Pancreatitis Crónica , Ratones , Humanos , Animales , Pancreatitis Crónica/genética , Páncreas/metabolismo , Células Acinares/metabolismo , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Chaperón BiP del Retículo Endoplásmico
4.
Am J Hum Genet ; 107(2): 175-182, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32763188

RESUMEN

Expanded carrier screening (ECS) for recessive monogenic diseases requires prior knowledge of genomic variation, including DNA variants that cause disease. The composition of pathogenic variants differs greatly among human populations, but historically, research about monogenic diseases has focused mainly on people with European ancestry. By comparison, less is known about pathogenic DNA variants in people from other parts of the world. Consequently, inclusion of currently underrepresented Indigenous and other minority population groups in genomic research is essential to enable equitable outcomes in ECS and other areas of genomic medicine. Here, we discuss this issue in relation to the implementation of ECS in Australia, which is currently being evaluated as part of the national Government's Genomics Health Futures Mission. We argue that significant effort is required to build an evidence base and genomic reference data so that ECS can bring significant clinical benefit for many Aboriginal and/or Torres Strait Islander Australians. These efforts are essential steps to achieving the Australian Government's objectives and its commitment "to leveraging the benefits of genomics in the health system for all Australians." They require culturally safe, community-led research and community involvement embedded within national health and medical genomics programs to ensure that new knowledge is integrated into medicine and health services in ways that address the specific and articulated cultural and health needs of Indigenous people. Until this occurs, people who do not have European ancestry are at risk of being, in relative terms, further disadvantaged.


Asunto(s)
Metagenómica/métodos , Grupos de Población/genética , Australia , Variación Genética/genética , Humanos
5.
Blood ; 135(12): 891-903, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31951647

RESUMEN

Leukocyte reduced NADP (NADPH) oxidase plays a key role in host defense and immune regulation. Genetic defects in NADPH oxidase result in chronic granulomatous disease (CGD), characterized by recurrent bacterial and fungal infections and aberrant inflammation. Key drivers of hyperinflammation induced by fungal cell walls in CGD are still incompletely defined. In this study, we found that CGD (CYBB-) neutrophils produced higher amounts of leukotriene B4 (LTB4) in vitro after activation with zymosan or immune complexes, compared with wild-type (WT) neutrophils. This finding correlated with increased calcium influx in CGD neutrophils, which was restrained in WT neutrophils by the electrogenic activity of NADPH oxidase. Increased LTB4 generation by CGD neutrophils was also augmented by paracrine cross talk with the LTB4 receptor BLT1. CGD neutrophils formed more numerous and larger clusters in the presence of zymosan in vitro compared with WT cells, and the effect was also LTB4- and BLT1-dependent. In zymosan-induced lung inflammation, focal neutrophil infiltrates were increased in CGD compared with WT mice and associated with higher LTB4 levels. Inhibiting LTB4 synthesis or antagonizing the BLT1 receptor after zymosan challenge reduced lung neutrophil recruitment in CGD to WT levels. Thus, LTB4 was the major driver of excessive neutrophilic lung inflammation in CGD mice in the early response to fungal cell walls, likely by a dysregulated feed-forward loop involving amplified neutrophil production of LTB4. This study identifies neutrophil LTB4 generation as a target of NADPH oxidase regulation, which could potentially be exploited therapeutically to reduce excessive inflammation in CGD.


Asunto(s)
Pared Celular/inmunología , Hongos/inmunología , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Infiltración Neutrófila/genética , Neutrófilos/metabolismo , Receptores de Leucotrieno B4/metabolismo , Animales , Calcio , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ratones , Micosis/genética , Micosis/inmunología , Micosis/metabolismo , Micosis/microbiología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/patología , Oxidación-Reducción , Estrés Oxidativo , Unión Proteica , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 116(33): 16497-16506, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31346084

RESUMEN

Host inflammatory responses must be tightly regulated to ensure effective immunity while limiting tissue injury. IFN gamma (IFNγ) primes macrophages to mount robust inflammatory responses. However, IFNγ also induces cell death, and the pathways that regulate IFNγ-induced cell death are incompletely understood. Using genome-wide CRISPR/Cas9 screening, we identified autophagy genes as central mediators of myeloid cell survival during the IFNγ response. Hypersensitivity of autophagy gene-deficient cells to IFNγ was mediated by tumor necrosis factor (TNF) signaling via receptor interacting protein kinase 1 (RIPK1)- and caspase 8-mediated cell death. Mice with myeloid cell-specific autophagy gene deficiency exhibited marked hypersensitivity to fatal systemic TNF administration. This increased mortality in myeloid autophagy gene-deficient mice required the IFNγ receptor, and mortality was completely reversed by pharmacologic inhibition of RIPK1 kinase activity. These findings provide insight into the mechanism of IFNγ-induced cell death via TNF, demonstrate a critical function of autophagy genes in promoting cell viability in the presence of inflammatory cytokines, and implicate this cell survival function in protection against mortality during the systemic inflammatory response.


Asunto(s)
Autofagia/genética , Interferón gamma/toxicidad , Células Mieloides/patología , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Sistemas CRISPR-Cas/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citoprotección/efectos de los fármacos , Genoma , Ratones Noqueados , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Células Mieloides/ultraestructura , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma/genética
7.
Sensors (Basel) ; 21(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34450938

RESUMEN

Rayleigh waves are very useful for ultrasonic nondestructive evaluation of structural and mechanical components. Nonlinear Rayleigh waves have unique sensitivity to the early stages of material degradation because material nonlinearity causes distortion of the waveforms. The self-interaction of a sinusoidal waveform causes second harmonic generation, while the mutual interaction of waves creates disturbances at the sum and difference frequencies that can potentially be detected with minimal interaction with the nonlinearities in the sensing system. While the effect of surface roughness on attenuation and dispersion is well documented, its effects on the nonlinear aspects of Rayleigh wave propagation have not been investigated. Therefore, Rayleigh waves are sent along aluminum surfaces having small, but different, surface roughness values. The relative nonlinearity parameter increased significantly with surface roughness (average asperity heights 0.027-3.992 µm and Rayleigh wavelengths 0.29-1.9 mm). The relative nonlinearity parameter should be decreased by the presence of attenuation, but here it actually increased with roughness (which increases the attenuation). Thus, an attenuation-based correction was unsuccessful. Since the distortion from material nonlinearity and surface roughness occur over the same surface, it is necessary to make material nonlinearity measurements over surfaces having the same roughness or in the future develop a quantitative understanding of the roughness effect on wave distortion.

8.
Sensors (Basel) ; 21(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34883972

RESUMEN

Ultrasonic guided waves provide unique capabilities for the structural health monitoring of plate-like structures. They can detect and locate various types of material degradation through the interaction of shear-horizontal (SH) waves and Lamb waves with the material. Magnetostrictive transducers (MSTs) can be used to generate and receive both SH and Lamb waves and yet their characteristics have not been thoroughly studied, certainly not on par with piezoelectric transducers. A series of multiphysics simulations of the MST/plate system is conducted to investigate the characteristics of MSTs that affect guided wave generation and reception. The results are presented in the vein of showing the flexibility that MSTs provide for guided waves in a diverse range of applications. In addition to studying characteristics of the MST components (i.e., the magnetostrictive layer, meander electric coil, and biased magnetic field), single-sided and double-sided MSTs are compared for preferential wave mode generation. The wave mode control principle is based on the activation line for phase velocity dispersion curves, whose slope is the wavelength, which is dictated by the meander coil spacing. A double-sided MST with in-phase signals preferentially excites symmetric SH and Lamb modes, while a double-sided MST with out-of-phase signals preferentially excites antisymmetric SH and Lamb modes. All attempted single-mode actuations with double-sided MSTs were successful, with the SH3 mode actuated at 922 kHz in a 6-mm-thick plate being the highest frequency. Additionally, the results show that increasing the number of turns in the meander coil enhances the sensitivity of the MST as a receiver and substantially reduces the frequency bandwidth.


Asunto(s)
Transductores , Ultrasonido , Campos Magnéticos , Ondas Ultrasónicas
9.
Hum Mutat ; 41(7): 1298-1307, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32196812

RESUMEN

ABCA3 transports phospholipids across lamellar body membranes in pulmonary alveolar type II cells and is required for surfactant assembly. Rare, biallelic, pathogenic ABCA3 variants result in lethal neonatal respiratory distress syndrome and childhood interstitial lung disease. Qualitative functional characterization of ABCA3 missense variants suggests two pathogenic classes: disrupted intracellular trafficking (type I mutant) or impaired ATPase-mediated phospholipid transport into the lamellar bodies (type II mutant). We qualitatively compared wild-type (WT-ABCA3) with four uncharacterized ABCA3 variants (c.418A>C;p.Asn140His, c.3609_3611delCTT;p.Phe1203del, c.3784A>G;p.Ser1262Gly, and c.4195G>A;p.Val1399Met) in A549 cells using protein processing, colocalization with intracellular organelles, lamellar body ultrastructure, and ATPase activity. We quantitatively measured lamellar body-like vesicle diameter and intracellular ABCA3 trafficking using fluorescence-based colocalization. Three ABCA3 variants (p.Asn140His, p.Ser1262Gly, and p.Val1399Met) were processed and trafficked normally and demonstrated well-organized lamellar body-like vesicles, but had reduced ATPase activity consistent with type II mutants. P.Phe1203del was processed normally, had reduced ATPase activity, and well-organized lamellar body-like vesicles, but quantitatively colocalized with both endoplasmic reticulum and lysosomal markers, an intermediate phenotype suggesting disruption of both intracellular trafficking and phospholipid transport. All ABCA3 mutants demonstrated mean vesicle diameters smaller than WT-ABCA3. Qualitative and quantitative functional characterization of ABCA3 variants informs mechanisms of pathogenicity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Células A549 , Vesículas Citoplasmáticas , Humanos , Enfermedades Pulmonares Intersticiales/genética , Mutación Missense , Alveolos Pulmonares , Surfactantes Pulmonares
10.
Proc Natl Acad Sci U S A ; 114(7): 1672-1677, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137842

RESUMEN

Enteroviruses are among the most common viral infectious agents of humans and are primarily transmitted by the fecal-oral route. However, the events associated with enterovirus infections of the human gastrointestinal tract remain largely unknown. Here, we used stem cell-derived enteroids from human small intestines to study enterovirus infections of the intestinal epithelium. We found that enteroids were susceptible to infection by diverse enteroviruses, including echovirus 11 (E11), coxsackievirus B (CVB), and enterovirus 71 (EV71), and that contrary to an immortalized intestinal cell line, enteroids induced antiviral and inflammatory signaling pathways in response to infection in a virus-specific manner. Furthermore, using the Notch inhibitor dibenzazepine (DBZ) to drive cellular differentiation into secretory cell lineages, we show that although goblet cells resist E11 infection, enteroendocrine cells are permissive, suggesting that enteroviruses infect specific cell populations in the human intestine. Taken together, our studies provide insights into enterovirus infections of the human intestine, which could lead to the identification of novel therapeutic targets and/or strategies to prevent or treat infections by these highly clinically relevant viruses.


Asunto(s)
Infecciones por Enterovirus/virología , Enterovirus/fisiología , Intestino Delgado/virología , Organoides/virología , Células CACO-2 , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Células Cultivadas , Dibenzazepinas/farmacología , Resistencia a la Enfermedad/genética , Infecciones por Enterovirus/metabolismo , Inhibidores Enzimáticos/farmacología , Perfilación de la Expresión Génica/métodos , Interacciones Huésped-Patógeno , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Intestino Delgado/citología , Intestino Delgado/metabolismo , Organoides/citología , Organoides/metabolismo , Transducción de Señal/genética
11.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901842

RESUMEN

Lamb waves propagating within a waveguide often have similar frequency content. If there are multiple Lamb wave modes with the same frequency content, the wavenumber spectrum can be used to distinguish between them. As a result, the wavenumber spectrum is an important tool for determining the modal content of signals. In this paper, we propose a new method for measuring wavenumber spectra that uses an air-coupled transducer for reception and Snell's law instead of a fast-Fourier transform. The method employs an angular scan rather than a translational scan. The advantages and disadvantages of the method are discussed along with some suggestions for potential improvements. Finally, experimental results comparing the proposed method to a more conventional method, which used a PVDF transducer, demonstrate the feasibility of the proposed method.

12.
Br J Cancer ; 118(1): 72-78, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29112685

RESUMEN

BACKGROUND: Pretreatment serum squamous cell carcinoma antigen (SCCA) is a prognostic biomarker in women with cervical cancer. SCCA has not been evaluated as an early indicator of response to chemoradiation therapy (CRT). The molecular role of the two SCCA isoforms, SCCA1 (SERPINB3) and SCCA2 (SERPINB4), in cervical cancer is unknown. We hypothesised that changes in serum SCCA during definitive CRT predicts treatment response, and that SCCA1 mediates radiation resistance. METHODS: Patients treated with definitive CRT for cervical squamous carcinoma with serum SCCA measured were included. SCCA immunohistochemistry was performed on tumour biopsies. Post-treatment FDG-PET/CT, recurrence, and overall survival were recorded. Radiation response of cervical tumour cell lines after SCCA1 expression or CRISPR/Cas9 knockout was evaluated by clonogenic survival assay. RESULTS: Persistently elevated serum SCCA during definitive CRT was an independent predictor of positive post-therapy FDG-PET/CT (P=0.043), recurrence (P=0.0046) and death (P=0.015). An SCCA1-expressing vector increased radioresistance, while SCCA knock out increased radiosensitivity of cervical tumour cell lines in vitro. CONCLUSIONS: Early response assessment with serum SCCA is a powerful prognostic tool. These findings suggest that escalation of therapy in patients with elevated or sustained serum SCCA and molecular targeting of SCCA1 should be considered.


Asunto(s)
Antígenos de Neoplasias/sangre , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/sangre , Carcinoma de Células Escamosas/terapia , Quimioradioterapia/métodos , Serpinas/sangre , Serpinas/metabolismo , Neoplasias del Cuello Uterino/terapia , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/sangre , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/uso terapéutico , Fraccionamiento de la Dosis de Radiación , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Persona de Mediana Edad , Serpinas/genética , Análisis de Supervivencia , Resultado del Tratamiento , Regulación hacia Arriba , Neoplasias del Cuello Uterino/sangre , Neoplasias del Cuello Uterino/metabolismo
13.
Sensors (Basel) ; 18(1)2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29324721

RESUMEN

Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT's components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT's performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT's capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches.

14.
J Biol Chem ; 291(27): 14012-14022, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27189943

RESUMEN

Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. elegans degenerin channels are sensitive to LSS. MEC-10 is required for a robust LSS response as the response was largely blunted in oocytes expressing homomeric MEC-4 or MEC-4d channels. We examined a series of MEC-10/MEC-4 chimeras to identify specific domains (amino terminus, first transmembrane domain, and extracellular domain) and sites (residues 130-132 and 134-137) within MEC-10 that are required for a robust response to shear stress. In addition, the LSS response was largely abolished by MEC-10 mutations encoded by a touch-insensitive mec-10 allele, providing a correlation between the channel's responses to two different mechanical forces. Our findings suggest that MEC-10 has an important role in the channel's response to mechanical forces.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Mecánico , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Xenopus
16.
Sensors (Basel) ; 17(3)2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28257065

RESUMEN

Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.

17.
Hum Mol Genet ; 23(19): 5123-32, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24838285

RESUMEN

α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options.


Asunto(s)
Descubrimiento de Drogas , Estudio de Asociación del Genoma Completo , Interferencia de ARN , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Animales , Caenorhabditis elegans , Biología Computacional , Modelos Animales de Enfermedad , Genómica , Ensayos Analíticos de Alto Rendimiento , Humanos , Mutación , Unión Proteica , Deficiencias en la Proteostasis/genética , Reproducibilidad de los Resultados , Deficiencia de alfa 1-Antitripsina/tratamiento farmacológico
18.
Hum Mol Genet ; 23(19): 5109-22, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24838286

RESUMEN

The accumulation of serpin oligomers and polymers within the endoplasmic reticulum (ER) causes cellular injury in patients with the classical form α1-antitrypsin deficiency (ATD). To better understand the cellular and molecular genetic aspects of this disorder, we generated transgenic C. elegans strains expressing either the wild-type (ATM) or Z mutant form (ATZ) of the human serpin fused to GFP. Animals secreted ATM, but retained polymerized ATZ within dilated ER cisternae. These latter animals also showed slow growth, smaller brood sizes and decreased longevity; phenotypes observed in ATD patients or transgenic mouse lines expressing ATZ. Similar to mammalian models, ATZ was disposed of by autophagy and ER-associated degradation pathways. Mutant strains defective in insulin signaling (daf-2) also showed a marked decrease in ATZ accumulation. Enhanced ATZ turnover was associated with the activity of two proteins central to systemic/exogenous (exo)-RNAi pathway: the dsRNA importer, SID-1 and the argonaute, RDE-1. Animals with enhanced exo-RNAi activity (rrf-3 mutant) phenocopied the insulin signaling mutants and also showed increased ATZ turnover. Taken together, these studies allude to the existence of a novel proteostasis pathway that mechanistically links misfolded protein turnover to components of the systemic RNAi machinery.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Interferencia de ARN , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Línea Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Degradación Asociada con el Retículo Endoplásmico , Expresión Génica , Genes Reporteros , Humanos , Insulina/metabolismo , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Regiones Promotoras Genéticas , Proteolisis , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Serpinas , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/genética , alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-26884819

RESUMEN

Since the identification of BRCA1 there has only ever been described two bi-allelic mutation carriers, one of whom was subsequently shown to be a mono-allelic carrier. The second patient diagnosed with two BRCA1 mutations appears to be accurate but there remain some questions about the missense variant identified in that patient. In this report we have identified a woman who is a bi-allelic mutation carrier of BRCA1 and provide an explanation as to why this patient has a phenotype very similar to that of any mono-allelic mutation carrier. The splice variant identified in this patient appears to be associated with the up-regulation of a BRCA1 splice variant that rescues the lethality of being a double mutant. The consequences of the findings of this report may have implications for mutation interpretation and that could serve as a model for not only BRCA1 but also for other autosomal dominant disorders that are considered as being embryonically lethal.

20.
Sensors (Basel) ; 17(1)2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-28025508

RESUMEN

Harsh environments and confined spaces require that nondestructive inspections be conducted with robotic systems. Ultrasonic guided waves are well suited for robotic systems because they can provide efficient volumetric coverage when inspecting for various types of damage, including cracks and corrosion. Shear horizontal guided waves are especially well suited for robotic inspection because they are sensitive to cracks oriented perpendicular or parallel to the wave propagation direction and can be generated with electromagnetic acoustic transducers (EMATs) and magnetostrictive transducers (MSTs). Both types of transducers are investigated for crack detection in a stainless steel plate. The MSTs require the robot to apply a compressive normal force that creates frictional force coupling. However, the coupling is observed to be very dependent upon surface roughness and surface debris. The EMATs are coupled through the Lorentz force and are thus noncontact, although they depend on the lift off between transducer and substrate. After comparing advantages and disadvantages of each transducer for robotic inspection the EMATs are selected for application to canisters that store used nuclear fuel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA