Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Therm Biol ; 123: 103891, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972154

RESUMEN

Phenological models for insect pests often rely on knowledge of thermal reaction norms. These may differ in shape depending on developmental thermal conditions (e.g. constant vs. fluctuating) and other factors such as life-stages. Here, we conducted an extensive comparative study of the thermal reaction norms for development and viability in the invasive fly, Drosophila suzukii, under constant and fluctuating thermal regimes. Flies, were submitted to 15 different constant temperatures (CT) ranging from 8 to 35 °C. We compared responses under CT with patterns observed under 15 different fluctuating temperature (FT) regimes. We tested several equations for thermal performance curves and compared various models to obtain thermal limits and degree-day estimations. To validate the model's predictions, the phenology was monitored in two artificial field-like conditions and two natural conditions in outdoor cages during spring and winter. Thermal reaction norm for viability from egg to pupa was broader than that from egg to adult. FT conditions yielded a broader thermal breadth for viability than CT, with a performance extended towards the colder side, consistent with our field observations in winter. Models resulting from both CT and FT conditions made accurate predictions of degree-day as long as the temperature remained within the linear part of the developmental rate curve. Under cold artificial and natural winter conditions, a model based on FT data made more accurate predictions. Model based on CT failed to predict adult's emergence in winter. We also document the first record of development and adult emergence throughout winter in D. suzukii. Population dynamics models in D. suzukii are all based on summer phenotype and CT. Accounting for variations between seasonal phenotypes, stages, and thermal conditions (CT vs. FT) could improve the predictive power of the models.

2.
J Exp Biol ; 226(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589559

RESUMEN

The cockroach Gromphadorhina coquereliana can survive at low temperatures under extensive periods of cold stress. To assess energy management and insect adaptation in response to cold, we measured mitochondrial activity and oxidative stress in muscle and fat body tissues from G. coquereliana under a fluctuating thermal regime (FTR; stressed at 4°C for 3 h on 3 consecutive days, with or without 24 h recovery). Compared with our earlier work showing that a single exposure to cold significantly affects mitochondrial parameters, here, repeated exposure to cold triggered an acclimatory response, resulting in unchanged mitochondrial bioenergetics. Immediately after cold exposure, we observed an increase in the overall pool of ATP and a decrease in typical antioxidant enzyme activity. We also observed decreased activity of uncoupling protein 4 in muscle mitochondria. After 24 h of recovery, we observed an increase in expression of antioxidant enzymes in muscles and the fat body and a significant increase in the expression of UCP4 and HSP70 in the latter. This indicates that processes related to energy conversion and disturbance under cold stress may trigger different protective mechanisms in these tissues, and that these mechanisms must be activated to restore insect homeostasis. The mitochondrial parameters and enzymatic assays suggest that mitochondria are not affected during FTR but oxidative stress markers are decreased, and a 24 h recovery period allows for the restoration of redox and energy homeostasis, especially in the fat body. This confirms the crucial role of the fat body in intermediary metabolism and energy management in insects and in the response to repeated thermal stress.


Asunto(s)
Cucarachas , Animales , Antioxidantes , Estrés Oxidativo , Mitocondrias , Homeostasis
3.
J Therm Biol ; 117: 103706, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714112

RESUMEN

Most ectotherms rely on behavioural thermoregulation to maintain body temperatures close to their physiological optimum. Hence, ectotherms can drastically limit their exposure to thermal extremes by selecting a narrower range of temperatures, which includes their preferred temperature (Tpref). Despite evidence that behavioural thermoregulation can be adjusted by phenotypic plasticity or constrained by natural selection, intraspecific Tpref variations across environmental gradients remain overlooked as compared to other thermal traits like thermal tolerance. Here, we analyzed Tpref variation of spider populations found along a gradient of urban heat island (UHI) which displays large thermal variations over small distances. We measured two components of the thermal preference, namely the mean Tpref and the Tpref range (i.e., standard deviation) in 557 field-collected individuals of a common ground-dwelling spider (Pardosa saltans, Lycosidae) using a laboratory thermal gradient. We determined if Tpref values differed among ten populations from contrasting thermal zones. We showed that endogenous factors such as body size or sex primarily determine both mean Tpref and Tpref range. The Tpref range was also linked to the UHI intensity to a lesser extent, yet only in juveniles. The absence of relationship between Tpref metrics and UHI in adult spiders suggests a Bogert effect according to which the ability of individuals to detect and exploit optimal microclimates weakens the selection pressure of temperatures (here driven by UHI) on their thermal physiology. Alternatively, this lack of relationship could also indicate that temperature patterns occurring at the scale of the spiders' micro-habitat differ from measured ones. This study shows the importance of considering both inter-individual and inter-population variations of the Tpref range when conducting Tpref experiments, and supports Tpref range as being a relevant measure to inform on the strength of behavioural thermoregulation in a given population.

4.
J Therm Biol ; 114: 103583, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37270894

RESUMEN

A single critical thermal limit is often used to explain and infer the impact of climate change on geographic range and population abundance. However, it has limited application in describing the temporal dynamic and cumulative impacts of extreme temperatures. Here, we used a thermal tolerance landscape approach to address the impacts of extreme thermal events on the survival of co-existing aphid species (Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum padi). Specifically, we built the thermal death time (TDT) models based on detailed survival datasets of three aphid species with three ages across a broad range of stressful high (34-40 °C) and low (-3∼-11 °C) temperatures to compare the interspecific and developmental stage variations in thermal tolerance. Using these TDT parameters, we performed a thermal risk assessment by calculating the potential daily thermal injury accumulation associated with the regional temperature variations in three wheat-growing sites along a latitude gradient. Results showed that M. dirhodum was the most vulnerable to heat but more tolerant to low temperatures than R. padi and S. avenae. R. padi survived better at high temperatures than Sitobion avenae and M. dirhodum but was sensitive to cold. R. padi was estimated to accumulate higher cold injury than the other two species during winter, while M. dirhodum accrued more heat injury during summer. The warmer site had higher risks of heat injury and the cooler site had higher risks of cold injury along a latitude gradient. These results support recent field observations that the proportion of R. padi increases with the increased frequency of heat waves. We also found that young nymphs generally had a lower thermal tolerance than old nymphs or adults. Our results provide a useful dataset and method for modelling and predicting the consequence of climate change on the population dynamics and community structure of small insects.


Asunto(s)
Áfidos , Lesión por Frío , Animales , Cambio Climático , Temperatura , Frío
5.
Glob Chang Biol ; 28(20): 5914-5927, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35811569

RESUMEN

Polar and alpine regions are changing rapidly with global climate change. Yet, the impacts on biodiversity, especially on the invertebrate ectotherms which are dominant in these areas, remain poorly understood. Short-term extreme temperature events, which are growing in frequency, are expected to have profound impacts on high-latitude ectotherms, with native species being less resilient than their alien counterparts. Here, we examined in the laboratory the effects of short periodic exposures to thermal extremes on survival responses of seven native and two non-native invertebrates from the sub-Antarctic Islands. We found that survival of dipterans was significantly reduced under warming exposures, on average having median lethal times (LT50 ) of about 30 days in control conditions, which declined to about 20 days when exposed to daily short-term maxima of 24°C. Conversely, coleopterans were either not, or were less, affected by the climatic scenarios applied, with predicted LT50 as high as 65 days under the warmest condition (daily exposures at 28°C for 2 h). The native spider Myro kerguelensis was characterized by an intermediate sensitivity when subjected to short-term daily heat maxima. Our results unexpectedly revealed a taxonomic influence, with physiological sensitivity to heat differing between higher level taxa, but not between native and non-native species representing the same higher taxon. The survival of a non-native carabid beetle under the experimentally imposed conditions was very high, but similar to that of native beetles, while native and non-native flies also exhibited very similar sensitivity to warming. As dipterans are a major element of diversity of sub-Antarctic, Arctic and other cold ecosystems, such observations suggest that the increased occurrence of extreme, short-term, thermal events could lead to large-scale restructuring of key terrestrial ecosystem components both in ecosystems protected from and those exposed to the additional impacts of biological invasions.


Asunto(s)
Artrópodos , Cambio Climático , Animales , Biodiversidad , Ecosistema , Invertebrados
6.
Artículo en Inglés | MEDLINE | ID: mdl-34044160

RESUMEN

Temperate species, contrary to their tropical counterparts, are exposed not only to thermally variable environments with low temperatures but also to long winters. Different selective pressures may have driven divergent physiological adaptations in closely related species with different biogeographic origins. To survive unfavourable winter conditions, Drosophila species in temperate areas generally undergo a period of reproductive dormancy, associated with a cold-induced cessation of oogenesis and metabolic reorganization. This work aims to compare cold tolerance and metabolic signatures of cold-exposed females exhibiting different reproductive maturity status (mature and immature females) of four Drosophila species from tropical vs. temperate origins. We expected that the capacity for delayed reproduction of immature females could result in the redirection of the energy-related metabolites to be utilized for surviving the cold season. To do so, we studied an array of 45 metabolites using quantitative target GC-MS profiling. Reproductively immature females of temperate species showed the lower CTmin and the faster chill coma recovery time (i.e. the most cold-tolerant group). Principal component analysis captured differences across species, but also between reproductive maturity states. Notably, temperate species exhibited significantly higher levels of glucose, alanine, and gluconolactone than tropical ones. As proline and glycerol showed higher abundances in immature females of temperate species compared to the levels exhibited by the rest of the groups, we reasoned that glucose and alanine could serve as intermediates in the synthesis of these compatible solutes. All in all, our findings suggest that cold-exposed females of temperate species accumulate energy-related and protective metabolites (e.g. glycerol and proline) while delaying reproduction, and that these metabolites are relevant to cold tolerance even at modest concentrations.


Asunto(s)
Aclimatación/fisiología , Drosophila/genética , Drosophila/fisiología , Glicerol/metabolismo , Metabolómica , Prolina/metabolismo , Adaptación Fisiológica , Alanina/metabolismo , Animales , Frío , Metabolismo Energético , Femenino , Cromatografía de Gases y Espectrometría de Masas , Gluconatos/metabolismo , Lactonas/metabolismo , Análisis de Componente Principal , Reproducción , Estaciones del Año , Factores Sexuales , Especificidad de la Especie
7.
BMC Genomics ; 20(1): 413, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31117947

RESUMEN

BACKGROUND: Insects have the capacity to adjust their physiological mechanisms during their lifetime to promote cold tolerance and cope with sublethal thermal conditions, a phenomenon referred to as thermal acclimation. The spotted wing drosophila, Drosophila suzukii, is an invasive fruit pest that, like many other species, enhances its thermotolerance in response to thermal acclimation. However, little is known about the underlying mechanisms of this plastic response. Here, we promoted flies' cold tolerance by gradually increasing acclimation duration (i.e. pre-exposure from 2 h to 9 days at 10 °C), and then compared transcriptomic responses of cold hardy versus cold susceptible phenotypes using RNA sequencing. RESULTS: Cold tolerance of D. suzukii increased with acclimation duration; the longer the acclimation, the higher the cold tolerance. Cold-tolerant flies that were acclimated for 9 days were selected for transcriptomic analyses. RNA sequencing revealed a total of 2908 differentially expressed genes: 1583 were up- and 1325 were downregulated in cold acclimated flies. Functional annotation revealed many enriched GO-terms among which ionic transport across membranes and signaling were highly represented in acclimated flies. Neuronal activity and carbohydrate metabolism were also enriched GO-terms in acclimated flies. Results also revealed many GO-terms related to oogenesis which were underrepresented in acclimated flies. CONCLUSIONS: Involvement of a large cluster of genes related to ion transport in cold acclimated flies suggests adjustments in the capacity to maintain ion and water homeostasis. These processes are key mechanisms underlying cold tolerance in insects. Down regulation of genes related to oogenesis in cold acclimated females likely reflects that females were conditioned at 10 °C, a temperature that prevents oogenesis. Overall, these results help to understand the molecular underpinnings of cold tolerance acquisition in D. suzukii. These data are of importance considering that the invasive success of D. suzukii in diverse climatic regions relates to its high thermal plasticity.


Asunto(s)
Aclimatación , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/fisiología , Regulación de la Expresión Génica , Termotolerancia , Animales , Frío , Drosophila/clasificación , Perfilación de la Expresión Génica , Homeostasis , Transcriptoma
8.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R751-R763, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30943049

RESUMEN

Chronic cold exposure is detrimental to chill susceptible insects that may accumulate chill injuries. To cope with deleterious effects of cold temperature, insects employ a variety of physiological strategies and metabolic adjustments, such as production of cryoprotectants, or remodeling of cellular membranes. Cold tolerance is a key element determining the fundamental niche of species. Because Drosophila suzukii is an invasive fruit pest, originating from East Asia, knowledge about its thermal biology is urgently needed. Physiological mechanisms underlying cold tolerance plasticity remain poorly understood in this species. Here, we explored metabolic and lipidomic modifications associated with the acquisition of cold tolerance in D. suzukii using Omics technologies (LC- and GC-MS/MS). In both cold-acclimated males and females, we observed physiological changes consistent with homeoviscous/homeophasic adaptation of membranes: reshuffling of phospholipid head groups and increasing unsaturation rate of fatty acids. Modification of fatty acids unsaturation were also observed in triacylglycerides, which would likely increase accessibility of lipid reserves. At the metabolic level, we observed clear-cut differentiation of metabolic profiles with cold-acclimated metabotypes showing accumulation of several potential cryoprotectants (sugars and amino acids). Metabolic pathway analyses indicated a remodeling of various processes, including purine metabolism and aminoacyl tRNA biosynthesis. These data provide a large-scale characterization of lipid rearrangements and metabolic pathway modifications in D. suzukii in response to cold acclimation and contribute to characterizing the strategies used by this species to modulate cold tolerance.


Asunto(s)
Aclimatación , Frío , Respuesta al Choque por Frío , Drosophila/metabolismo , Metabolismo Energético , Metabolismo de los Lípidos , Aminoácidos/metabolismo , Animales , Cromatografía Liquida , Ácidos Grasos Insaturados/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Lipidómica/métodos , Masculino , Fosfolípidos/metabolismo , Purinas/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Azúcares/metabolismo , Espectrometría de Masas en Tándem , Factores de Tiempo , Aminoacilación de ARN de Transferencia , Triglicéridos/metabolismo
9.
J Exp Biol ; 222(Pt 23)2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31672731

RESUMEN

Cold tolerance is considered an important factor determining the geographic distribution of insects. We have previously shown that despite its tropical origin, the cockroach Gromphadorinha coquereliana is capable of surviving exposures to cold. However, the freezing tolerance of this species had not yet been examined. Low temperature is known to alter membrane integrity in insects, but whether chilling or freezing compromises DNA integrity remains a matter of speculation. In the present study, we subjected the G. coquereliana adults to freezing to determine their supercooling point (SCP) and evaluated whether the cockroaches were capable of surviving partial and complete freezing. Next, we conducted single cell gel electrophoresis (SCGE) assays to determine whether heat, cold and freezing altered hemocyte DNA integrity. The SCP of this species was high and around -4.76°C, which is within the typical range of freezing-tolerant species. Most cockroaches survived to 1 day after partial ice formation (20% mortality), but died progressively in the next few days after cold stress (70% mortality after 4 days). One day after complete freezing, most insects died (70% mortality), and after 4 days, 90% of them had succumbed. The SCGE assays showed substantial levels of DNA damage in hemocytes. When cockroaches were heat-stressed, the level of DNA damage was similar to that observed in the freezing treatment, though all heat-stressed insects survived. The present study shows that G. coquereliana can be considered as moderately freeze-tolerant, and that extreme low temperature stress can affect DNA integrity, suggesting that this cockroach may possess an efficient DNA repair system.


Asunto(s)
Aclimatación/genética , Cucarachas/fisiología , Frío/efectos adversos , Daño del ADN , Animales , Cucarachas/genética , Congelación , Masculino
10.
J Exp Biol ; 221(Pt 2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29191860

RESUMEN

Crowding is a complex stress that can affect organisms' physiology, especially through decreased food quality and accessibility. Here, we evaluated the effect of larval density on several biological traits of Drosophila melanogaster An increasing gradient, from 1 to 1000 eggs per milliliter of food, was used to characterize life-history traits variations. Crowded conditions resulted in striking decreases of fresh mass (up to 6-fold) and viability, as well as delayed development. Next, we assessed heat and cold tolerance in L3 larvae reared at three selected larval densities: low (LD, 5 eggs ml-1), medium (MD, 60 eggs ml-1) and high (HD, 300 eggs ml-1). LT50 values of MD and, to a lesser extent, HD larvae were repeatedly higher than those from LD larvae, under both heat and cold stress. We investigated potential physiological correlates associated with this density-dependent thermotolerance shift. No marked pattern could be drawn from the expression of stress-related genes. However, a metabolomic analysis differentiated the metabotypes of the three density levels, with potential candidates associated with this clustering (e.g. glucose 6-phosphate, GABA, sugars and polyols). Under HD, signs of oxidative stress were noted but not confirmed at the transcriptional level. Finally, urea, a common metabolic waste, was found to accumulate substantially in food from MD and HD larvae. When supplemented in food, urea stimulated cold tolerance but reduced heat tolerance in LD larvae. This study highlights that larval crowding is an important environmental parameter that induces drastic consequences on flies' physiology and can affect thermotolerance in a density-specific way.


Asunto(s)
Antioxidantes/metabolismo , Drosophila melanogaster/fisiología , Expresión Génica , Hormesis/fisiología , Peróxido de Hidrógeno/metabolismo , Termotolerancia , Urea/metabolismo , Animales , Respuesta al Choque por Frío , Aglomeración , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Respuesta al Choque Térmico , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Densidad de Población
11.
J Exp Biol ; 221(Pt 14)2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30037966

RESUMEN

Insects exposed to low temperature often have high mortality or exhibit sublethal effects. A growing number of recent studies have shown beneficial effects of exposing insects to recurrent brief warm pulses during low-temperature stress (fluctuating thermal regime, FTR). The physiological underpinnings of the beneficial effects of FTR on cold survival have been extensively studied over the past few years. Profiling with various '-omics' techniques has provided supporting evidence for different physiological responses between insects exposed to FTR and constant low temperature. Evidence from transcriptomic, metabolomic and lipidomic studies points to a system-wide loss of homeostasis at low temperature that can be counterbalanced by repair mechanisms under FTR. Although there has been considerable progress in understanding the physiological mechanisms underlying the beneficial effects of FTR, here we discuss how many areas still lack clarity, such as the precise role(s) of heat shock proteins, compatible solutes or the identification of regulators and key players involved in the observed homeostatic responses. FTR can be particularly beneficial in applied settings, such as for model insects used in research, integrated pest management and pollination services. We also explain how the application of FTR techniques in large-scale facilities may require overcoming some logistical and technical constraints. FTR definitively enhances survival at low temperature in insects, but before it can be widely used, we suggest that the possible fitness and energy costs of FTR must be explored more thoroughly. Although FTR is not ecologically relevant, similar processes may operate in settings where temperatures fluctuate naturally.


Asunto(s)
Aclimatación , Frío , Insectos/fisiología , Metabolismo de los Lípidos , Metaboloma , Transcriptoma , Animales , Regulación de la Temperatura Corporal/fisiología , Homeostasis
12.
Naturwissenschaften ; 105(9-10): 59, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30291448

RESUMEN

It is now acknowledged that bacteria from gut microbiota deeply interact with their host by altering many physiological traits. Such interplay is likely to consequently affect stress tolerance. Here, we compared cold and heat tolerance of Drosophila melanogaster flies with undisrupted (control (Co)) versus disrupted gut microbiota (dechorionated eggs (De)). The disrupting treatment strongly reduced bacterial load in flies' guts, though 16S sequencing analysis did not evidence strong diversity changes in the remaining bacterial community. Both chill coma recovery and acute cold survival were repeatedly lower in De than in Co flies under our experimental conditions. However, heat tolerance was not consistently affected by gut disruption. Our results suggest that microbiota-related effects on the host can alter ecologically relevant traits such as thermal tolerance.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Frío , Drosophila melanogaster/microbiología , Microbiota/fisiología , Aclimatación/fisiología , Animales
13.
Biochim Biophys Acta ; 1861(11): 1736-1745, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27542540

RESUMEN

When exposed to constant low temperatures (CLTs), insects often suffer from cumulative physiological injuries that can severely compromise their fitness and survival. Yet, mortality can be considerably lowered when the cold stress period is interrupted by periodic warm interruption(s), referred to as fluctuating thermal regimes, FTRs. In this study, we have shown that FTRs strongly promoted cold tolerance of Drosophila melanogaster adults. We then assessed whether this marked phenotypic shift was associated with detectable physiological changes, such as synthesis of cryoprotectants and/or membrane remodeling. To test these hypotheses, we conducted two different time-series Omics analyzes in adult flies submitted to CLTs vs. FTRs: metabolomics (GC/MS) and lipidomics (LC/ESI/MS) targeting membrane phospholipids. We observed increasing levels in several polyhydric alcohols (arabitol, erythritol, sorbitol, mannitol, glycerol), sugars (fructose, mannose) and amino acids (serine, alanine, glutamine) in flies under CLT. Prolonged exposure to low temperature was also associated with a marked deviation of metabolic homeostasis and warm interruptions as short as 2h were sufficient to periodically return the metabolic system to functionality. Lipidomics revealed an increased relative proportion of phosphatidylethanolamines and a shortening of fatty acyl chains in flies exposed to cold, likely to compensate for the ordering effect of low temperature on membranes. We found a remarkable correspondence in the time-course of changes between the metabolic and phospholipids networks, both suggesting a fast homeostatic regeneration during warm intervals under FTRs. In consequence, we suggest that periodic opportunities to restore system-wide homeostasis contribute to promote cold tolerance under FTRs.


Asunto(s)
Adaptación Fisiológica , Frío , Drosophila melanogaster/metabolismo , Metabolismo de los Lípidos , Metabolómica/métodos , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas , Modelos Lineales , Fosfolípidos/metabolismo , Análisis de Componente Principal , Probabilidad , Espectrometría de Masa por Ionización de Electrospray
14.
Annu Rev Entomol ; 60: 123-40, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25341105

RESUMEN

All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.


Asunto(s)
Cambio Climático , Ambiente , Insectos/fisiología , Animales , Temperatura
15.
Proc Natl Acad Sci U S A ; 109(50): 20744-9, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23197828

RESUMEN

Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world's southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions.


Asunto(s)
Chironomidae/genética , Chironomidae/fisiología , Aclimatación/genética , Aclimatación/fisiología , Animales , Regiones Antárticas , Artrópodos/genética , Artrópodos/fisiología , Secuencia de Bases , Cartilla de ADN/genética , Deshidratación/genética , Deshidratación/fisiopatología , Expresión Génica , Genes de Insecto , Metaboloma , Especificidad de la Especie
16.
Artículo en Inglés | MEDLINE | ID: mdl-24434805

RESUMEN

The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Productos Biológicos/administración & dosificación , Drosophila melanogaster/efectos de los fármacos , Longevidad/efectos de los fármacos , Péptidos/administración & dosificación , Animales , Respuesta al Choque por Frío/efectos de los fármacos , Suplementos Dietéticos , Drosophila melanogaster/fisiología , Fragmentos de Péptidos , Biosíntesis de Proteínas/efectos de los fármacos
17.
Insect Sci ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632693

RESUMEN

The lesser mealworm, Alphitobius diaperinus, is an invasive tenebrionid beetle and a vector of pathogens. Due to the emergence of insecticide resistance and consequent outbreaks that generate significant phytosanitary and energy costs for poultry farmers, it has become a major insect pest worldwide. To better understand the molecular mechanisms behind this resistance, we studied a strain of A. diaperinus from a poultry house in Brittany that was found to be highly resistant to the ß-cyfluthrin. The strain survived ß-cyfluthrin exposures corresponding to more than 100 times the recommended dose. We used a comparative de novo RNA-Seq approach to explore genes expression in resistant versus sensitive strains. Our de novo transcriptomic analyses showed that responses to ß-cyfluthrin likely involved a whole set of resistance mechanisms. Genes related to detoxification, metabolic resistance, cuticular hydrocarbon biosynthesis and proteolysis were found to be constitutively overexpressed in the resistant compared to the sensitive strain. Follow-up enzymatic assays confirmed that the resistant strain exhibited high basal activities for detoxification enzymes such as cytochrome P450 monooxygenase and glutathione-S-transferase. The in-depth analysis of differentially expressed genes suggests the involvement of complex regulation of signaling pathways. Detailed knowledge of these resistance mechanisms is essential for the establishment of effective pest control.

18.
Sci Total Environ ; 927: 172252, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599414

RESUMEN

Plastics are ubiquitous in our daily life. Large quantities of plastics leak in the environment where they weather and fragment into micro- and nanoparticles. This potentially releases additives, but rarely leads to a complete mineralization, thus constitutes an environmental hazard. Plastic pollution in agricultural soils currently represents a major challenge: quantitative data of nanoplastics in soils as well as their effects on biodiversity and ecosystem functions need more attention. Plastic accumulation interferes with soil functions, including water dynamics, aeration, microbial activities, and nutrient cycling processes, thus impairing agricultural crop yield. Plastic debris directly affects living organisms but also acts as contaminant vectors in the soils, increasing the effects and the threats on biodiversity. Finally, the effects of plastics on terrestrial invertebrates, representing major taxa in abundance and diversity in the soil compartment, need urgently more investigation from the infra-individual to the ecosystem scales.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Plásticos , Contaminantes del Suelo , Suelo , Plásticos/análisis , Animales , Contaminantes del Suelo/análisis , Suelo/química , Biodiversidad , Ecosistema
20.
J Exp Biol ; 216(Pt 2): 253-9, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22996448

RESUMEN

Many endogenous factors influence thermal tolerance of insects. Among these, age contributes an important source of variation. Heat tolerance is typically high in newly eclosed insects, before declining dramatically. It is not known whether this phenomenon relates to cold tolerance also. In addition, the underlying mechanisms of this variation are unresolved. In this study, we tested whether cold tolerance declines in Drosophila melanogaster females aged from 0 to 5 days. We also assessed whether expression (basal and induced) of eight stress genes (hsp22, hsp23, hsp40, hsp68, hsp70Aa, hsp83, Starvin and Frost) varied post-eclosion in correspondence with changes found in cold tolerance. We report that cold tolerance was very high at eclosion and then it rapidly declined in young flies. hsp23 and hsp68 showed a dramatic age-related variation of basal expression that was associated with cold tolerance proxies. Significant age-related plasticity of cold-induced expression was also found for hsp22, hsp23, hsp68, hsp70Aa, Frost and Starvin. Induced expression of hsp22 and hsp70Aa was high in newly enclosed phenotypes before declining dramatically, whilst opposite age-related patterns were found for hsp23, hsp68, Starvin and Frost. This study shows a marked within-stage variation in cold tolerance. The involvement of the stress genes in setting basal thermal tolerance is discussed.


Asunto(s)
Aclimatación , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Proteínas de Choque Térmico/genética , Factores de Edad , Animales , Frío , Drosophila melanogaster/genética , Femenino , Regulación de la Expresión Génica , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA