Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36149055

RESUMEN

In spermatophytes the sporophytic (diploid) and the gametophytic (haploid) generations co-exist in ovules, and the coordination of their developmental programs is of pivotal importance for plant reproduction. To achieve efficient fertilization, the haploid female gametophyte and the diploid ovule structures must coordinate their development to form a functional and correctly shaped ovule. WUSCHEL-RELATED HOMEOBOX (WOX) genes encode a family of transcription factors that share important roles in a wide range of processes throughout plant development. Here, we show that STIP is required for the correct patterning and curvature of the ovule in Arabidopsis thaliana. The knockout mutant stip-2 is characterized by a radialized ovule phenotype due to severe defects in outer integument development. In addition, alteration of STIP expression affects the correct differentiation and progression of the female germline. Finally, our results reveal that STIP is required to tightly regulate the key ovule factors INNER NO OUTER, PHABULOSA and WUSCHEL, and they define a novel genetic interplay in the regulatory networks determining ovule development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Células Germinativas/metabolismo , Óvulo Vegetal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Physiol ; 194(4): 2117-2135, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38060625

RESUMEN

The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Arabidopsis/fisiología , Factores de Transcripción/metabolismo , Meristema , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Histona Desacetilasas/metabolismo
3.
J Exp Bot ; 75(11): 3351-3367, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38459807

RESUMEN

In gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains. To decipher the mechanism induced by pollination required to avoid ovule senescence and then abortion, we compared the transcriptomes of pollinated and unpollinated ovules at three time points after the end of the emission of pollination drop. Transcriptomic and in situ expression analyses revealed that several key genes involved in programmed cell death such as senescence and apoptosis, DNA replication, and cell cycle regulation were differentially expressed in unpollinated ovules compared to pollinated ovules. We provide evidence that the pollen captured by the pollination drop affects auxin local accumulation and might cause deregulation of key genes required for the ovule's programmed cell death, activating both the cell cycle regulation and DNA replication genes.


Asunto(s)
Ginkgo biloba , Óvulo Vegetal , Polen , Polinización , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/fisiología , Óvulo Vegetal/genética , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Ginkgo biloba/genética , Ginkgo biloba/fisiología , Ginkgo biloba/crecimiento & desarrollo , Transcriptoma , Regulación de la Expresión Génica de las Plantas
4.
Plant Mol Biol ; 112(3): 179-193, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37171544

RESUMEN

REM (reproductive meristem) transcription factors have been proposed as regulators of plant reproductive development mainly based on their specific expression patterns in reproductive structures, but their roles are still largely unknown probably because of their redundancy. We selected three REM genes (REM13, REM34 and REM46) for functional analysis, based on their genome position and/or co-expression data.Our results suggest that these genes have a role in flowering time regulation and may modulate cell cycle progression. In addition, protein interaction experiments revealed that REM34 and REM46 interact with each other, suggesting that they might work cooperatively to regulate cell division during inflorescence meristem commitment.Previous attempts of using co-expression data as a guide for functional analysis of REMs were limited by the transcriptomic data available at the time. Our results uncover previously unknown functions of three members of the REM family of Arabidopsis thaliana and open the door to more comprehensive studies of the REM family, where the combination of co-expression analysis followed by functional studies might contribute to uncovering the biological roles of these proteins and the relationship among them.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Inflorescencia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Meristema , Regulación de la Expresión Génica de las Plantas
5.
Development ; 147(23)2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33158925

RESUMEN

In higher plants, the female germline is formed from the megaspore mother cell (MMC), a single cell in the premeiotic ovule. Previously, it was reported that mutants in the RNA-dependent DNA methylation (RdDM) pathway might be involved in restricting the female germline to a single nucellus cell. We show that the DRM methyltransferase double mutant drm1drm2 also presents ectopic enlarged cells, consistent with supernumerary MMC-like cells. In wild-type ovules, MMC differentiation requires SPOROCYTELESS/NOZZLE (SPL/NZZ), as demonstrated by the spl/nzz mutant failing to develop an MMC. We address the poorly understood upstream regulation of SPL/NZZ in ovules, showing that the RdDM pathway is important to restrict SPL/NZZ expression. In ago9, rdr6 and drm1drm2 mutants, SPL/NZZ is expressed ectopically, suggesting that the multiple MMC-like cells observed might be attributable to the ectopic expression of SPL/NZZ. We show that the ovule identity gene, SEEDSTICK, directly regulates AGO9 and RDR6 expression in the ovule and therefore indirectly regulates SPL/NZZ expression. A model is presented describing the network required to restrict SPL/NZZ expression to specify a single MMC.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilación de ADN/genética , Proteínas de Dominio MADS/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Arabidopsis/crecimiento & desarrollo , Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas/genética , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Metiltransferasas/genética , Mutación/genética , Óvulo Vegetal/genética , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , ARN/genética , ARN Polimerasa Dependiente del ARN/genética , Células Madre/citología
6.
J Exp Bot ; 74(8): 2462-2478, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36794770

RESUMEN

Apomixis is considered a potentially revolutionary tool to generate high-quality food at a lower cost and shorter developmental time due to clonal seed production through apomeiosis and parthenogenesis. In the diplosporous type of apomixis, meiotic recombination and reduction are circumvented either by avoiding or failing meiosis or by a mitotic-like division. Here, we review the literature on diplospory, from early cytological studies dating back to the late 19th century to recent genetic findings. We discuss diplosporous developmental mechanisms, including their inheritance. Furthermore, we compare the strategies adopted to isolate the genes controlling diplospory with those to produce mutants forming unreduced gametes. Nowadays, the dramatically improved technologies of long-read sequencing and targeted CRISPR/Cas mutagenesis justify the expectation that natural diplospory genes will soon be identified. Their identification will answer questions such as how the apomictic phenotype can be superimposed upon the sexual pathway and how diplospory genes have evolved. This knowledge will contribute to the application of apomixis in agriculture.


Asunto(s)
Apomixis , Apomixis/genética , Semillas/genética , Reproducción Asexuada , Patrón de Herencia , Fenotipo , Reproducción/genética
7.
Ann Bot ; 132(3): 383-400, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37467144

RESUMEN

BACKGROUND AND AIMS: The MBW complex consist of proteins belonging to three major families (MYB, bHLH and WDR) involved in various processes throughout plant development: epidermal cell development, mucilage secretory cells and flavonoid biosynthesis. Recently, it has been reported that TT8, encoding a bHLH transcription factor, is involved in the biosynthesis of flavonoids in the seed coat and it also plays a role in bypassing the postzygotic barrier resulting from an unbalance in genetic loads of the parental lines. Here, we focus on the functional evolution, in seed development, of the bHLH proteins that are part of the MBW complex, complemented with a literature review. METHODS: Phylogenetic analyses performed across seed plants and expression analyses in the reproductive tissues of four selected angiosperms (Arabidopsis thaliana, Brassica napus, Capsella rubella and Solanum lycopersicum) allow us to hypothesize on the evolution of its functions. KEY RESULTS: TT8 expression in the innermost layer of the seed coat is conserved in the selected angiosperms. However, except for Arabidopsis, TT8 is also expressed in ovules, carpels and fruits. The homologues belonging to the sister clade of TT8, EGL3/GL3, involved in trichome development, are expressed in the outermost layer of the seed coat, suggesting potential roles in mucilage. CONCLUSIONS: The ancestral function of these genes appears to be flavonoid biosynthesis, and the conservation of TT8 expression patterns in the innermost layer of the seed coat in angiosperms suggests that their function in postzygotic barriers might also be conserved. Moreover, the literature review and the results of the present study suggest a sophisticated association, linking the mechanisms of action of these genes to the cross-communication activity between the different tissues of the seed. Thus, it provides avenues to study the mechanisms of action of TT8 in the postzygotic triploid block, which is crucial because it impacts seed development in unbalanced crosses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Ann Bot ; 131(5): 827-838, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36945741

RESUMEN

BACKGROUND AND AIMS: Morphogenesis occurs through accurate interaction between essential players to generate highly specialized plant organs. Fruit structure and function are triggered by a neat transcriptional control involving distinct regulator genes encoding transcription factors (TFs) or signalling proteins, such as the C2H2/C2HC zinc-finger NO TRANSMITTING TRACT (NTT) or the MADS-box protein SEEDSTICK (STK), which are important in setting plant reproductive competence, feasibly by affecting cell wall polysaccharide and lipid distribution. Arabinogalactan proteins (AGPs) are major components of the cell wall and are thought to be involved in the reproductive process as important players in specific stages of development. The detection of AGPs epitopes in reproductive tissues of NTT and other fruit development-related TFs, such as MADS-box proteins including SHATTERPROOF1 (SHP1), SHP2 and STK, was the focus of this study. METHODS: We used fluorescence microscopy to perform immunolocalization analyses on stk and ntt single mutants, on the ntt stk double mutant and on the stk shp1 shp2 triple mutant using specific anti-AGP monoclonal antibodies. In these mutants, the expression levels of selected AGP genes were also measured by quantitative real-time PCR and compared with the respective expression in wild-type (WT) plants. KEY RESULTS: The present immunolocalization study collects information on the distribution patterns of specific AGPs in Arabidopsis female reproductive tissues, complemented by the quantification of AGP expression levels, comparing WT, stk and ntt single mutants, the ntt stk double mutant and the stk shp1 shp2 triple mutant. CONCLUSIONS: These findings reveal distinct AGP distribution patterns in different developmental mutants related to the female reproductive unit in Arabidopsis. The value of the immunofluorescence labelling technique is highlighted in this study as an invaluable tool to dissect the remodelling nature of the cell wall in developmental processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Mucoproteínas/metabolismo , Proteínas de Dominio MADS/genética
9.
Mol Biol Rep ; 50(6): 4887-4897, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37072653

RESUMEN

BACKGROUND: In Brachiaria sexual reproduction, during ovule development, a nucellar cell differentiates into a megaspore mother cell (MMC) that, through meiosis and mitosis, gives rise to a reduced embryo sac. In aposporic apomictic Brachiaria, next to the MMC, other nucellar cells differentiate into aposporic initials that enter mitosis directly forming an unreduced embryo sac. The IPT (isopentenyltransferase) family comprises key genes in the cytokinin (CK) pathway which are expressed in Arabidopsis during ovule development. BbrizIPT9, a B. brizantha (syn. Urochloa brizantha) IPT9 gene, highly similar to genes of other Poaceae plants, also shows similarity with Arabidopsis IPT9, AtIPT9. In this work, we aimed to investigate association of BbrizIPT9 with ovule development in sexual and apomictic plants. METHODS AND RESULTS: RT-qPCR showed higher BbrizIPT9 expression in the ovaries of sexual than in the apomictic B. brizantha. Results of in-situ hybridization showed strong signal of BbrizIPT9 in the MMC of both plants, at the onset of megasporogenesis. By analyzing AtIPT9 knockdown mutants, we verified enlarged nucellar cell, next to the MMC, in a percentage significantly higher than in the wild type, suggesting that knockout of AtIPT9 gene triggered the differentiation of extra MMC-like cells. CONCLUSIONS: Our results indicate that AtIPT9 might be involved in the proper differentiation of a single MMC during ovule development. The expression of a BbrizIPT9, localized in male and female sporocytes, and lower in apomicts than in sexuals, and effect of IPT9 knockout in Arabidopsis, suggest involvement of IPT9 in early ovule development.


Asunto(s)
Arabidopsis , Brachiaria , Brachiaria/genética , Arabidopsis/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Poaceae , Reproducción/genética , Regulación de la Expresión Génica de las Plantas/genética
10.
Development ; 146(1)2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30538100

RESUMEN

The gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In Arabidopsis, several transcription factors are known to be involved in the development of these tissues. One of them is NO TRANSMITTING TRACT (NTT), essential for transmitting tract formation. We found that the NTT protein can interact with several gynoecium-related transcription factors, including several MADS-box proteins, such as SEEDSTICK (STK), known to specify ovule identity. Evidence suggests that NTT and STK control enzyme and transporter-encoding genes involved in cell wall polysaccharide and lipid distribution in gynoecial medial domain cells. The results indicate that the simultaneous loss of NTT and STK activity affects polysaccharide and lipid deposition and septum fusion, and delays entry of septum cells to their normal degradation program. Furthermore, we identified KAWAK, a direct target of NTT and STK, which is required for the correct formation of fruits in Arabidopsis These findings position NTT and STK as important factors in determining reproductive competence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Frutas/embriología , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Pared Celular/genética , Pared Celular/metabolismo , Frutas/genética , Frutas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Metabolismo de los Lípidos/genética , Proteínas de Dominio MADS/genética , Mananos/metabolismo , Meristema/metabolismo , Mutación/genética , Tubo Polínico/embriología , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Unión Proteica , Reproducción , Transcripción Genética
11.
J Exp Bot ; 73(5): 1499-1515, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34849721

RESUMEN

Cell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non-graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties. Changes in xyloglucan structure are known to play an important role in regulating cell growth. Therefore, the degradation of xyloglucan is an important modification that alters the cell wall. The α-XYLOSIDASE1 (XYL1) gene encodes the only α-xylosidase acting on xyloglucans in Arabidopsis thaliana. Here, we showed that mutation of XYL1 strongly influences seed size, seed germination, and fruit elongation. We found that the expression of XYL1 is directly regulated in developing seeds and fruit by the MADS-box transcription factor SEEDSTICK. We demonstrated that XYL1 complements the stk smaller seed phenotype. Finally, by atomic force microscopy, we investigated the role of XYL1 activity in maintaining cell stiffness and growth, confirming the importance of cell wall modulation in shaping organs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Frutas/genética , Frutas/metabolismo , Semillas
12.
J Child Lang ; : 1-19, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36325972

RESUMEN

Italian vowels have a shorter duration before a geminate than before a singleton consonant, but a longer duration in syllables carrying stress. We asked whether children can produce the differentiation in vowel duration in singleton/geminate contexts reported for adults and whether their production changes depending on position of primary stress. Italian children (three-to-six-year-olds) and adults performed a nonword repetition. Each nonword appeared in four contexts, with the stressed/unstressed vowel preceding/following the singleton/geminate: /pa'paso/, /pap'paso/, 'papaso/, /'pappaso/. Acoustic analyses on the duration of the vowel preceding (V1) and following (V2) the medial consonant showed a type of consonant by age group interaction: the difference in vowel duration between children and adults was greater for geminate than singleton contexts, and was greater when the vowel carried stress. When V1 carried stress, its duration was shorter in the geminate than in the singleton in adults and older children, not in younger children.

13.
New Phytol ; 232(6): 2353-2368, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34558676

RESUMEN

Generally, in gymnosperms, pollination and fertilization events are temporally separated and the developmental processes leading the switch from ovule integument into seed coat are still unknown. The single ovule integument of Ginkgo biloba acquires the typical characteristics of the seed coat long before the fertilization event. In this study, we investigated whether pollination triggers the transformation of the ovule integument into the seed coat. Transcriptomics and metabolomics analyses performed on ovules just prior and after pollination lead to the identification of changes occurring in Ginkgo ovules during this specific time. A morphological atlas describing the developmental stages of ovule development is presented. The metabolic pathways involved in the lignin biosynthesis and in the production of fatty acids are activated upon pollination, suggesting that the ovule integument starts its differentiation into a seed coat before the fertilization. Omics analyses allowed an accurate description of the main changes that occur in Ginkgo ovules during the pollination time frame, suggesting the crucial role of the pollen arrival on the progression of ovule development.


Asunto(s)
Óvulo Vegetal , Polinización , Ginkgo biloba , Polen , Semillas
14.
J Exp Bot ; 71(9): 2479-2489, 2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32067041

RESUMEN

Angiosperms form the largest group of land plants and display an astonishing diversity of floral structures. The development of flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and hormonal communication regulate ovule primordium initiation, spacing on the placenta, and development. Ovule number and gynoecium size are usually correlated and several genetic factors that impact these traits have been identified. Understanding and fine-tuning the gene regulatory networks influencing ovule number and pistil length open up strategies for crop yield improvement, which is pivotal in light of a rapidly growing world population. In this review, we present an overview of the current knowledge of the genes and hormones involved in determining ovule number and gynoecium size. We propose a model for the gene regulatory network that guides the developmental processes that determine seed yield.


Asunto(s)
Magnoliopsida , Óvulo Vegetal , Flores/genética , Meristema , Óvulo Vegetal/genética , Semillas/genética
15.
PLoS Genet ; 13(4): e1006726, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28388635

RESUMEN

Fruits and seeds are the major food source on earth. Both derive from the gynoecium and, therefore, it is crucial to understand the mechanisms that guide the development of this organ of angiosperm species. In Arabidopsis, the gynoecium is composed of two congenitally fused carpels, where two domains: medial and lateral, can be distinguished. The medial domain includes the carpel margin meristem (CMM) that is key for the production of the internal tissues involved in fertilization, such as septum, ovules, and transmitting tract. Interestingly, the medial domain shows a high cytokinin signaling output, in contrast to the lateral domain, where it is hardly detected. While it is known that cytokinin provides meristematic properties, understanding on the mechanisms that underlie the cytokinin signaling pattern in the young gynoecium is lacking. Moreover, in other tissues, the cytokinin pathway is often connected to the auxin pathway, but we also lack knowledge about these connections in the young gynoecium. Our results reveal that cytokinin signaling, that can provide meristematic properties required for CMM activity and growth, is enabled by the transcription factor SPATULA (SPT) in the medial domain. Meanwhile, cytokinin signaling is confined to the medial domain by the cytokinin response repressor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFERASE 6 (AHP6), and perhaps by ARR16 (a type-A ARR) as well, both present in the lateral domains (presumptive valves) of the developing gynoecia. Moreover, SPT and cytokinin, probably together, promote the expression of the auxin biosynthetic gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and the gene encoding the auxin efflux transporter PIN-FORMED 3 (PIN3), likely creating auxin drainage important for gynoecium growth. This study provides novel insights in the spatiotemporal determination of the cytokinin signaling pattern and its connection to the auxin pathway in the young gynoecium.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Citocininas/metabolismo , Meristema/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Meristema/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal , Triptófano-Transaminasa/genética
16.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142827

RESUMEN

Fertilization and seed formation are fundamental events in the life cycle of flowering plants. The seed is a functional unit whose main purpose is to propagate the plant. The first step in seed development is the formation of male and female gametophytes and subsequent steps culminate in successful fertilization. The detailed study of this process is highly relevant because it directly impacts human needs, such as protecting biodiversity and ensuring sustainable agriculture to feed the increasing world population. Cytokinins comprise a class of phytohormones that play many important roles during plant growth and development and in recent years, the role of this class of phytohormones during reproduction has become clear. Here, we review the role of cytokinins during ovule, pollen and seed formation at the genetic and molecular levels. The expansion of knowledge concerning the molecular mechanisms that control plant reproduction is extremely important to optimise seed production.


Asunto(s)
Arabidopsis/fisiología , Citocininas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Reproducción , Arabidopsis/efectos de los fármacos
17.
J Child Lang ; 47(4): 870-880, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31826787

RESUMEN

We investigated production of lexical stress in children with and without autism spectrum disorders (ASD), all monolingual Italian speakers. The mean age of the 16 autistic children was 5.73 years and the mean age of the 16 typically developing children was 4.65 years. Picture-naming targets were five trisyllabic words that began with a weak-strong pattern of lexical stress across the initial two syllables (WS: matita) and five trisyllabic words beginning with a strong-weak pattern (SW: gomito). Acoustic measures of the duration, fundamental frequency, and intensity of the first two vowels for correct word productions were used to calculate a normalised Pairwise Variability Index (PVI) for WS and SW words. Results of acoustic analyses indicated no statistically significant group differences in PVIs. Results should be interpreted in line with the exploratory nature of this study. We hope this study will encourage additional cross-linguistic studies of prosody in children's speech production.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Trastornos del Desarrollo del Lenguaje/diagnóstico , Fonética , Acústica del Lenguaje , Medición de la Producción del Habla , Conducta Verbal , Adolescente , Niño , Preescolar , Femenino , Humanos , Italia , Trastornos del Desarrollo del Lenguaje/psicología , Masculino
18.
Development ; 143(18): 3372-81, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27510967

RESUMEN

Seed dispersal is an essential trait that enables colonization of new favorable habitats, ensuring species survival. In plants with dehiscent fruits, such as Arabidopsis, seed dispersal depends on two processes: the separation of the fruit valves that protect the seeds (fruit dehiscence) and the detachment of the seeds from the funiculus connecting them to the mother plant (seed abscission). The key factors required to establish a proper lignin pattern for fruit dehiscence are SHATTERPROOF 1 and 2 (SHP1 and SHP2). Here, we demonstrate that the SHP-related gene SEEDSTICK (STK) is a key factor required to establish the proper lignin pattern in the seed abscission zone but in an opposite way. We show that STK acts as a repressor of lignin deposition in the seed abscission zone through the direct repression of HECATE3, whereas the SHP proteins promote lignin deposition in the valve margins by activating INDEHISCENT. The interaction of STK with the SEUSS co-repressor determines the difference in the way STK and SHP proteins control the lignification patterns. Despite this difference in the molecular control of lignification during seed abscission and fruit dehiscence, we show that the genetic networks regulating these two developmental pathways are highly conserved.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Frutas/metabolismo , Dispersión de Semillas/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Frutas/fisiología , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Dispersión de Semillas/genética
19.
Development ; 143(23): 4419-4424, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27737904

RESUMEN

The developmental programme of the pistil is under the control of both auxin and cytokinin. Crosstalk between these factors converges on regulation of the auxin carrier PIN-FORMED 1 (PIN1). Here, we show that in the triple transcription factor mutant cytokinin response factor 2 (crf2) crf3 crf6 both pistil length and ovule number were reduced. PIN1 expression was also lower in the triple mutant and the phenotypes could not be rescued by exogenous cytokinin application. pin1 complementation studies using genomic PIN1 constructs showed that the pistil phenotypes were only rescued when the PCRE1 domain, to which CRFs bind, was present. Without this domain, pin mutants resemble the crf2 crf3 crf6 triple mutant, indicating the pivotal role of CRFs in auxin-cytokinin crosstalk.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/embriología , Proteínas de Transporte de Membrana/metabolismo , Óvulo Vegetal/embriología , Factores de Transcripción/genética , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Flores/genética , Organogénesis de las Plantas/genética , Óvulo Vegetal/genética
20.
Development ; 143(15): 2780-90, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27338615

RESUMEN

Fertilization in flowering plants requires a complex series of coordinated events involving interaction between the male and female gametophyte. We report here molecular data on one of the key events underpinning this process - the death of the receptive synergid cell and the coincident bursting of the pollen tube inside the ovule to release the sperm. We show that two REM transcription factors, VALKYRIE (VAL) and VERDANDI (VDD), both targets of the ovule identity MADS-box complex SEEDSTICK-SEPALLATA3, interact to control the death of the receptive synergid cell. In vdd-1/+ mutants and VAL_RNAi lines, we find that GAMETOPHYTIC FACTOR 2 (GFA2), which is required for synergid degeneration, is downregulated, whereas expression of FERONIA (FER) and MYB98, which are necessary for pollen tube attraction and perception, remain unaffected. We also demonstrate that the vdd-1/+ phenotype can be rescued by expressing VDD or GFA2 in the synergid cells. Taken together, our findings reveal that the death of the receptive synergid cell is essential for maintenance of the following generations, and that a complex comprising VDD and VAL regulates this event.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Células Germinativas de las Plantas/metabolismo , Tubo Polínico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA