Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Arch Virol ; 165(5): 1049-1056, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32144545

RESUMEN

Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus, is the predominant cause of severe enteropathogenic diarrhea in swine. A simple, rapid, specific, and sensitive method is critical for monitoring PEDV on pig farms. In this study, a simple and rapid lateral flow immunoassay detection system that integrates europium (Eu) (III) chelate microparticles was developed to identify PEDV in fecal swabs. This newly developed diagnostic sandwich immunoassay utilizes lateral flow test strips (LFTSs). The fluorescence peak heights of the test line (HT) and the control line (HC) were measured using a fluorescence strip reader, and the HT/HC ratio was used for quantitation. The limit of detection of PEDV with this LFTS was ??ten times the median tissue culture infectious dose (TCID50) per mL??. Fecal swab samples were used to determine the cutoff value. Field samples, various PEDV strains and other viruses were used to determine the sensitivity and specificity of the Eu (III) chelate microparticle-based LFTSs, which were 97.8% and 100%, respectively, with a cutoff value of 0.05, as compared with reverse transcription polymerase chain reaction (RT-PCR). In samples from piglets experimentally infected with PEDV, the results were in high agreement with those obtained by RT-PCR. Epidemiological surveillance of PEDV using the LFTSs ??in areas threatened by African swine fever virus?? suggested that the PEDV positive rate on pig farms had significantly decreased, mainly due to the implementation of strict biosecurity measures. The results indicate that the Eu (III) chelate microparticle-based LFTS system is a rapid, sensitive, and reliable method for the identification of PEDV, indicating its suitability for epidemiological surveillance of PEDV infection.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Pruebas Diagnósticas de Rutina/métodos , Diarrea/veterinaria , Inmunoensayo/métodos , Compuestos Organometálicos , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Enfermedades de los Porcinos/diagnóstico , Animales , Infecciones por Coronavirus/diagnóstico , Diarrea/diagnóstico , Heces/virología , Microesferas , Compuestos Organometálicos/metabolismo , Sensibilidad y Especificidad , Porcinos , Factores de Tiempo
2.
Arch Virol ; 165(10): 2367-2372, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32757058

RESUMEN

Mammalian orthoreoviruses (MRVs) infect almost all mammals, and there are some reports on MRVs in China. In this study, a novel strain was identified, which was designated as HLJYC2017. The results of genetic analysis showed that MRV HLJYC2017 is a reassortant strain. According to biological information analysis, different serotypes of MRV contain specific amino acid insertions and deletions in the σ1 protein. Neutralizing antibody epitope analysis revealed partial cross-protection among MRV1, MRV2, and MRV3 isolates from China. L3 gene recombination in MRV was identified for the first time in this study. The results of this study provide valuable information on MRV reassortment and evolution.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Orthoreovirus de los Mamíferos/genética , Virus Reordenados/genética , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/veterinaria , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , China/epidemiología , Quirópteros , Ciervos , Heces/virología , Expresión Génica , Mutación INDEL , Ratones , Epidemiología Molecular , Orthoreovirus de los Mamíferos/clasificación , Orthoreovirus de los Mamíferos/inmunología , Orthoreovirus de los Mamíferos/aislamiento & purificación , Filogenia , ARN Viral/genética , Virus Reordenados/clasificación , Virus Reordenados/inmunología , Virus Reordenados/aislamiento & purificación , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología , Serogrupo , Porcinos
3.
Virus Res ; 339: 199247, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37923168

RESUMEN

Porcine parvovirus (PPV) is a pathogen of infectious reproductive disease, which can cause stillbirth, mummification, embryo death, and infertility (SMEDI) syndrome in pigs. The objective of this study was to gain new insights into the evolution and phylogeny of the PPV1 genome. In this study, we isolated two new PPV1 (HLJ202108-Y and SDLC202109) from northern China and sequenced their whole genomes. The new isolates were found to have three amino acid substitutions (K195R, K562R, and S578P) in nonstructural protein 1. The VP2 amino acid site contained nine nonsynonymous substitutions, including six substitutions of the Kresse strain corresponding to the NADL-2 strain and three substitutions of A414S, S436T, and N555K. Genetic evolution analysis was conducted on 107 reference sequences available in the GenBank database, and 4-5 PPV1 taxa were defined. The new isolates were in the same phylogenetic cluster as strain 27a. The changes in the cluster, specifically marker amino acids, and their potential role in enhancing pathogenicity are discussed in this study. Furthermore, the evolutionary tree map results showed that the strains in China were evolving in two directions: one was becoming increasingly similar to early NADL-2 strains, while the other was evolving toward 27a-like strains. We also compared the proliferation ability of the isolated strains in susceptible cells by analyzing the multistep growth curves. The results showed that the virulence titer of the mutant strain was high. In summary, this study introduced the latest changes in PPV and discussed the virus characteristics that were considered to affect virulence.


Asunto(s)
Parvovirus Porcino , Animales , Porcinos , Parvovirus Porcino/genética , Filogenia , Sustitución de Aminoácidos , China
4.
Vet Microbiol ; 253: 108955, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33373882

RESUMEN

In recent years, a novel, highly virulent variant of porcine epidemic diarrhea virus (PEDV) has emerged, causing substantial economic losses to the pork industry worldwide. In this study, a PEDV strain named LNsy was successfully isolated in China. Phylogenetic analysis based on the whole genome revealed that PEDV LNsy belonged to the G2 subtype. For the first time, a unique four amino acids (4-aa) insertion was identified in the COE region of the spike (S) protein (residues 499-640), resulting in an extra alpha helix in the spatial structure of the COE region. To determine changes in virus-neutralization (VN) antibody reactivity of the virus, polyclonal antibodies (PAbs) against the S protein of different subtypes were used in a VN test. Both PAbs against the S protein of the G1 and G2 subtype showed reduced VN reactivity to PEDV LNsy. Further, recombination analyses revealed that PEDV LNsy was the result of recombination between PEDV GDS13 and GDS46 strains at the genomic breakpoints (nt 17,959-20,594 in the alignment) in the ORF1b gene of the genomes. Pathological examination showed gross morphological pathological changes in the gut, including significant villus atrophy and shedding of the infected piglets. These results indicated that a 4-aa insertion in the COE region of the S protein may have partly altered the profiles of VN antibodies and thus it will be important to develop vaccine candidates to resist wild virus infection and to monitor the genetic diversity of PEDV.


Asunto(s)
Aminoácidos/genética , Filogenia , Virus de la Diarrea Epidémica Porcina/clasificación , Virus de la Diarrea Epidémica Porcina/genética , Glicoproteína de la Espiga del Coronavirus/genética , Animales , China , Chlorocebus aethiops , Variación Genética , Genoma Viral , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Organismos Libres de Patógenos Específicos , Porcinos/virología , Enfermedades de los Porcinos/virología , Células Vero
5.
Vet Microbiol ; 251: 108917, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33181437

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has been prevalent for many years. The viral spike (S) protein is the major target of neutralizing antibodies. However, there is little understanding of the locations of the neutralizing antibody epitopes in the spike structure. Here, we used a polyclonal antibody (pAb) against PEDV and a neutralizing monoclonal antibody (mAb) to isolate escape mutants of PEDV strain LNCT2. Finally, we isolated an escape mutant strain of PEDV, mutant-1B9, but still neutralized by the pAb. Analysis showed two regions deleted in the S protein which allowed mutant-1B9 to escape neutralization by mAb 1B9. These results suggest the deleted amino acids participate in the formation of conformational epitope and provides valuable information for mapping conformational epitopes. Importantly, no PEDV escape mutants were generated by treatment with pAbs, which suggests the potential utility of pAbs or combination therapies based on several mAbs in controlling PEDV infections.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por Coronavirus/veterinaria , Eliminación de Gen , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/química , Porcinos , Enfermedades de los Porcinos/virología , Células Vero
6.
J Virol Methods ; 279: 113855, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32173373

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes very high mortality in newborn piglets. The mucosal immune system in the gut must eliminate potential pathogens while maintaining a mutually beneficial relationship with the commensal microbiota. Antibodies derived from the secretory immunoglobulin A (SIgA) class, act as the first line of antigen-specific immunity in the gut by recognizing both pathogens and commensals. Therefore, the measurement of SIgA levels is an important index in evaluating PEDV infections and immune status. A simple and rapid method for the detection of PEDV-specific SIgA using an immunochromatographic test strip has been developed; incorporating a colloidal gold-labeled anti-SIgA secretory component (SC) mAb probe for the detection of anti-PEDV-specific SIgA in swine. On the strip, a gold-labeled anti-SIgA SC mAb was applied to a conjugate pad; purified PEDV particles and goat anti-mouse antibodies were blotted onto a nitrocellulose membrane to form the test and control lines, respectively. Results showed that the immunochromatographic test strip had high sensitivity and specificity. When compared with enzyme-linked immunosorbent assay, kappa value suggesting that the strip could be used to detect PEDV specific SIgA in colostrum samples. Furthermore, the strip assay is rapid and easy to perform with no requirement for professional-level skills or equipment. We found that the immunochromatographic test strip was a rapid, sensitive, and reliable method for the identification of PEDV specific SIgA, indicating its suitability for epidemiological surveillance as well as vaccine immunity when studying PEDV.


Asunto(s)
Anticuerpos Antivirales/análisis , Calostro/inmunología , Inmunoensayo/métodos , Inmunoglobulina A Secretora/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/inmunología , Animales , Femenino , Oro Coloide , Tiras Reactivas , Sensibilidad y Especificidad , Organismos Libres de Patógenos Específicos , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología
7.
Virus Res ; 273: 197752, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31518629

RESUMEN

A swine acute diarrhea syndrome coronavirus (SADS-CoV) that causes severe diarrhea in suckling piglets was identified in Southern China in 2017. To develop an antigen that is specific, sensitive, and easy to prepare for serological diagnosis, antigenic sites in the SADS-CoV nucleocapsid (N) protein were screened. We generated and characterized an N-reactive monoclonal antibody (mAb) 3E9 from mice immunized with recombinant N protein. Through fine epitope mapping of mAb 3E9 using a panel of eukaryotic-expressed polypeptides with GFP-tags, we identified the motif 343DAPVFTPAP351 as the minimal unit of the linear B-cell epitope recognized by mAb 3E9. Protein sequence alignment indicated that 343DAPVFTPAP351 was highly conserved in different SADS-CoV strains and SADS-related coronaviruses from bat, with one substitution in this motif in HKU2-related bat coronavirus. Using mAb 3E9, we observed that N protein was expressed in the cytoplasm and was in the nucleolus during SADS-CoV replication. N protein was immunoprecipitated from SADS-CoV-infected Vero E6 cells. Taken together, our results indicated that 3E9 mAb could be a useful tool to investigate the structure and function of N protein during viral replication.


Asunto(s)
Alphacoronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Nucléolo Celular/virología , Infecciones por Coronavirus/veterinaria , Mapeo Epitopo , Proteínas de la Nucleocápside/inmunología , Alphacoronavirus/química , Animales , Animales Lactantes/virología , Anticuerpos Monoclonales/aislamiento & purificación , Quirópteros/virología , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Citoplasma/virología , Diarrea/veterinaria , Diarrea/virología , Femenino , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside/genética , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Células Vero , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA