Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 28(5): 055201, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28008871

RESUMEN

Nanotextured surfaces provide an ideal platform for efficiently capturing and emitting light. However, the increased surface area in combination with surface defects induced by nanostructuring e.g. using reactive ion etching (RIE) negatively affects the device's active region and, thus, drastically decreases device performance. In this work, the influence of structural defects and surface states on the optical and electrical performance of InGaN/GaN nanorod (NR) light emitting diodes (LEDs) fabricated by top-down RIE of c-plane GaN with InGaN quantum wells was investigated. After proper surface treatment a significantly improved device performance could be shown. Therefore, wet chemical removal of damaged material in KOH solution followed by atomic layer deposition of only 10 [Formula: see text] alumina as wide bandgap oxide for passivation were successfully applied. Raman spectroscopy revealed that the initially compressively strained InGaN/GaN LED layer stack turned into a virtually completely relaxed GaN and partially relaxed InGaN combination after RIE etching of NRs. Time-correlated single photon counting provides evidence that both treatments-chemical etching and alumina deposition-reduce the number of pathways for non-radiative recombination. Steady-state photoluminescence revealed that the luminescent performance of the NR LEDs is increased by about 50% after KOH and 80% after additional alumina passivation. Finally, complete NR LED devices with a suspended graphene contact were fabricated, for which the effectiveness of the alumina passivation was successfully demonstrated by electroluminescence measurements.

2.
Nanotechnology ; 22(12): 125204, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21325714

RESUMEN

Thin films composed of Ge nanocrystals embedded in an amorphous SiO(2) matrix (Ge-NC TFs) were prepared using a low temperature in situ growth method. Unexpected high p-type conductivity was observed in the intrinsic Ge-NC TFs. Unintentional doping from shallow dopants was excluded as a candidate mechanism of hole generation. Instead, the p-type characteristic was attributed to surface state induced hole accumulation in NCs, and the hole conduction was found to be a thermally activated process involving charge hopping from one NC to its nearest neighbor. Theoretical analysis has shown that the density of surface states in Ge-NCs is sufficient to induce adequate holes for measured conductivity. The film conductivity can be improved significantly by post-growth rapid thermal annealing and this effect is explained by a simple thermodynamic model. The impact of impurities on the conduction properties was also studied. Neither compensation nor enhancement in conduction was observed in the Sb- and Ga-doped Ge-NC TFs, respectively. This could be attributed to the fact that these impurities are no longer shallow dopants in NCs and are much less likely to be effectively activated. Finally, the photovoltaic effect of heterojunction diodes employing such Ge-NC TFs was characterized in order to demonstrate its functionality in device implementation.

3.
Nanotechnology ; 19(42): 424019, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-21832679

RESUMEN

Doping of Si nanocrystals is an important topic in the emerging field of Si nanocrystals based all-Si tandem solar cells. Boron-doped Si nanocrystals embedded in a silicon dioxide matrix were realized by a co-sputtering process, followed by high temperature annealing. The x-ray photoelectron spectroscopy B 1s signal attributable to Si-B (187 eV) and/or B-B (188 eV) indicates that the boron may exist inside Si nanocrystals. A higher probability of effective boron doping was suggested for Si-rich oxide films with a low oxygen content, Then, structural and optical properties were characterized with a focus on the effects of the boron content on Si quantum dots. The results show that as the boron content increases, the nanocrystal size is slightly reduced and the Si crystallization is suppressed. The photoluminescence intensity of the films is decreased as the boron content increases. This is due to boron-induced defects and/or Auger processes induced by effective doping. These results can provide optimal conditions for future Si quantum dot based solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA