Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2308798120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487074

RESUMEN

Mammalian infants depend on parental care for survival, with numerous consequences for their behavioral development. We investigated the epigenetic and neurodevelopmental mechanisms mediating the impact of early biparental care on development of alloparenting behavior, or caring for offspring that are not one's own. We find that receiving high parental care early in life leads to slower epigenetic aging of both sexes and widespread male-specific differential expression of genes related to synaptic transmission and autism in the nucleus accumbens. Examination of parental care composition indicates that high-care fathers promote a male-specific increase in excitatory synapses and increases in pup retrieval behavior as juveniles. Interestingly, females raised by high-care fathers have the opposite behavioral response and display fewer pup retrievals. These results support the concept that neurodevelopmental trajectories are programmed by different features of early-life parental care and reveal that male neurodevelopmental processes are uniquely sensitive to care by fathers.


Asunto(s)
Conducta Animal , Padre , Humanos , Femenino , Animales , Masculino , Conducta Animal/fisiología , Conducta Materna/fisiología , Núcleo Accumbens , Padres , Conducta Paterna , Arvicolinae/fisiología
2.
Horm Behav ; 161: 105523, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484567

RESUMEN

Although research has shown that pets appear to provide certain types of social support to children, little is known about the physiological bases of these effects, especially in naturalistic contexts. In this study, we investigated the effect of free-form interactions between children (ages 8-10 years) and dogs on salivary cortisol concentrations in both species. We further investigated the role of the child-dog relationship by comparing interactions with the child's pet dog to interactions with an unfamiliar dog or a nonsocial control condition, and modeled associations between survey measures of the human-animal bond and children's physiological responses. In both children and dogs, salivary cortisol decreased from pre- to post-interaction; the effect was strongest for children interacting with an unfamiliar dog (compared to their pet dog) and for the pet dogs (compared to the unfamiliar dog). We found minimal evidence for associations between cortisol output and behaviors coded from video, but children scoring higher on survey measures of the human-animal bond exhibited the greatest reductions in cortisol when interacting with dogs. Self-reported loneliness was not related to cortisol or the human-animal bond, but measures of both loneliness and the human-animal bond were higher among children who participated after the onset of the COVID-19 pandemic, relative to those who participated before the pandemic. This study builds on previous work that investigated potential stress-buffering effects of human-animal interaction during explicit stressors and demonstrates important physiological correlates of naturalistic interactions between children and dogs, similar to those that occur in daily life.


Asunto(s)
Vínculo Humano-Animal , Hidrocortisona , Saliva , Perros , Animales , Niño , Hidrocortisona/metabolismo , Hidrocortisona/análisis , Masculino , Humanos , Femenino , Saliva/química , Saliva/metabolismo , Mascotas , Interacción Humano-Animal , Glucocorticoides/metabolismo , Soledad/psicología , COVID-19
3.
Dev Psychobiol ; 66(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38533486

RESUMEN

Exogenous oxytocin (OT) is widely used to induce or augment labor with little understanding of the impact on offspring development. In rodent models, including the prairie vole (Microtus ochrogaster), it has been shown that oxytocin administered to mothers can affect the nervous system of the offspring with long lasting behavioral effects especially on sociality. Here, we examined the hypothesis that perinatal oxytocin exposure could have epigenetic and transcriptomic consequences. Prairie voles were exposed to exogenous oxytocin, through injections given to the mother just prior to birth, and were studied at the time of weaning. The outcome of this study revealed increased epigenetic age in oxytocin-exposed animals compared to the saline-exposed group. Oxytocin exposure led to 900 differentially methylated CpG sites (annotated to 589 genes), and 2 CpG sites (2 genes) remained significantly different after correction for multiple comparisons. Differentially methylated CpG sites were enriched in genes known to be involved in regulation of gene expression and neurodevelopment. Using RNA-sequencing we also found 217 nominally differentially expressed genes (p<0.05) in nucleus accumbens, a brain region involved in reward circuitry and social behavior; after corrections for multiple comparisons 6 genes remained significantly differentially expressed. Finally, we found that maternal oxytocin administration led to widespread alternative splicing in the nucleus accumbens. These results indicate that oxytocin exposure during birth may have long lasting epigenetic consequences. A need for further investigation of how oxytocin administration impacts development and behavior throughout the lifespan is supported by these outcomes.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Animales , Femenino , Embarazo , Masculino , Humanos , Oxitocina/metabolismo , Madres , Núcleo Accumbens/metabolismo , Conducta Social , Epigénesis Genética , Arvicolinae
4.
Dev Psychopathol ; 35(2): 912-925, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35379374

RESUMEN

This study examined struggles to establish autonomy and relatedness with peers in adolescence and early adulthood as predictors of advanced epigenetic aging assessed at age 30. Participants (N = 154; 67 male and 87 female) were observed repeatedly, along with close friends and romantic partners, from ages 13 through 29. Observed difficulty establishing close friendships characterized by mutual autonomy and relatedness from ages 13 to 18, an interview-assessed attachment state of mind lacking autonomy and valuing of attachment at 24, and self-reported difficulties in social integration across adolescence and adulthood were all linked to greater epigenetic age at 30, after accounting for chronological age, gender, race, and income. Analyses assessing the unique and combined effects of these factors, along with lifetime history of cigarette smoking, indicated that each of these factors, except for adult social integration, contributed uniquely to explaining epigenetic age acceleration. Results are interpreted as evidence that the adolescent preoccupation with peer relationships may be highly functional given the relevance of such relationships to long-term physical outcomes.


Asunto(s)
Conducta del Adolescente , Relaciones Interpersonales , Adulto , Humanos , Masculino , Adolescente , Femenino , Grupo Paritario , Amigos , Epigénesis Genética
5.
Pharmacol Rev ; 72(4): 829-861, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912963

RESUMEN

Oxytocin is a pleiotropic, peptide hormone with broad implications for general health, adaptation, development, reproduction, and social behavior. Endogenous oxytocin and stimulation of the oxytocin receptor support patterns of growth, resilience, and healing. Oxytocin can function as a stress-coping molecule, an anti-inflammatory, and an antioxidant, with protective effects especially in the face of adversity or trauma. Oxytocin influences the autonomic nervous system and the immune system. These properties of oxytocin may help explain the benefits of positive social experiences and have drawn attention to this molecule as a possible therapeutic in a host of disorders. However, as detailed here, the unique chemical properties of oxytocin, including active disulfide bonds, and its capacity to shift chemical forms and bind to other molecules make this molecule difficult to work with and to measure. The effects of oxytocin also are context-dependent, sexually dimorphic, and altered by experience. In part, this is because many of the actions of oxytocin rely on its capacity to interact with the more ancient peptide molecule, vasopressin, and the vasopressin receptors. In addition, oxytocin receptor(s) are epigenetically tuned by experience, especially in early life. Stimulation of G-protein-coupled receptors triggers subcellular cascades allowing these neuropeptides to have multiple functions. The adaptive properties of oxytocin make this ancient molecule of special importance to human evolution as well as modern medicine and health; these same characteristics also present challenges to the use of oxytocin-like molecules as drugs that are only now being recognized. SIGNIFICANCE STATEMENT: Oxytocin is an ancient molecule with a major role in mammalian behavior and health. Although oxytocin has the capacity to act as a "natural medicine" protecting against stress and illness, the unique characteristics of the oxytocin molecule and its receptors and its relationship to a related hormone, vasopressin, have created challenges for its use as a therapeutic drug.


Asunto(s)
Oxitocina/farmacología , Oxitocina/fisiología , Animales , Humanos , Oxitocina/química , Oxitocina/metabolismo
6.
BMC Pregnancy Childbirth ; 22(1): 884, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36447139

RESUMEN

BACKGROUND: Postpartum hemorrhage remains a key contributor to overall maternal morbidity in the United States. Current clinical assessment methods used to predict postpartum hemorrhage are unable to prospectively identify about 40% of hemorrhage cases. Oxytocin is a first-line pharmaceutical for preventing and treating postpartum hemorrhage, which acts through oxytocin receptors on uterine myocytes. Existing research indicates that oxytocin function is subject to variation, influenced in part by differences in the DNA sequence within the oxytocin receptor gene. One variant, rs53576, has been shown to be associated with variable responses to exogenous oxytocin when administered during psychological research studies. How this variant may influence myometrial oxytocin response in the setting of third stage labor has not been studied. We tested for differences in the frequency of the oxytocin receptor genotype at rs53576 in relationship to the severity of blood loss among a sample of individuals who experienced vaginal birth. METHODS: A case-control prospective design was used to enroll 119 postpartum participants who underwent vaginal birth who were at least 37 weeks of gestation. Cases were defined by either a 1000 mL or greater blood loss or instances of heavier bleeding where parturients were given additional uterotonic treatment due to uterine atony. Controls were matched to cases on primiparity and labor induction status. Genotype was measured from a maternal blood sample obtained during the 2nd postpartum month from 95 participants. Statistical analysis included bivariate tests and generalized linear and Poisson regression modeling. RESULTS: The distribution of the genotype across the sample of 95 participants was 40% GG (n = 38), 50.5% AG (n = 48) and 9.5% AA (n = 9). Blood loss of 1000 mL or greater occurred at a rate of 7.9% for GG, 12.5% for AG and 55.6% for AA participants (p = 0.005). Multivariable models demonstrated A-carriers (versus GG) had 275.2 mL higher blood loss (95% CI 96.9-453.4, p < 0.01) controlling for parity, intrapartum oxytocin, self-reported ancestry, active management of third stage or genital tract lacerations. Furthermore, A-carrier individuals had a 79% higher risk for needing at least one second-line treatment (RR = 1.79, 95% CI = 1.08-2.95) controlling for covariates. Interaction models revealed that A-carriers who required no oxytocin for labor stimulation experienced 371.4 mL greater blood loss (95% CI 196.6-546.2 mL). CONCLUSIONS: We provide evidence of a risk allele in the oxytocin receptor gene that may be involved in the development of postpartum hemorrhage among participants undergoing vaginal birth, particularly among those with fewer risk factors. The findings, if reproducible, could be useful in studying pharmacogenomic strategies for predicting, preventing or treating postpartum hemorrhage.


Asunto(s)
Hemorragia Posparto , Receptores de Oxitocina , Inercia Uterina , Femenino , Humanos , Embarazo , Oxitocina/genética , Oxitocina/uso terapéutico , Polimorfismo de Nucleótido Simple , Hemorragia Posparto/genética , Receptores de Oxitocina/genética , Inercia Uterina/genética , Genotipo , Estudios de Casos y Controles , Estudios Prospectivos
7.
Dev Psychobiol ; 63(1): 114-124, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32803764

RESUMEN

The Adaptive Calibration Model of Stress Responsivity (ACM) suggests that developmental experiences predictably tune biological systems to meet the demands of the environment. Particularly important is the calibration of reward systems. Using a longitudinal sample (N = 184) followed since adolescence, this study models the dimensions of early life stress and their effects on epigenetic modification of the oxytocin receptor gene (OXTR) and individual differences in neural response to reward anticipation. We first created a latent variable model of developmental context using measures collected when participants were 13 years old. As adults, two subsets of participants completed a reward anticipation fMRI paradigm (N = 82) and agreed to have their blood assayed for (OXTR) DNA methylation (N = 112) at two CpG sites. Three latent constructs of developmental context emerged: Neighborhood Harshness, Family Harshness, and Abuse and Disorder. Greater OXTR DNA methylation at CpG sites -924 and -934 blunted the association between greater Neighborhood Harshness and increased neural activation in caudate in anticipation of rewards. Interaction effects were also found outside of reward-related areas for all three latent constructs. Results indicate an epigenetically derived differential susceptibility model whereby high methylation coincides with decreased association between developmental environment and neural reward anticipation.


Asunto(s)
Metilación de ADN , Receptores de Oxitocina , Recompensa , Adolescente , Adulto , Humanos , Oxitocina/metabolismo , Receptores de Oxitocina/genética
8.
BMC Med ; 18(1): 244, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799881

RESUMEN

BACKGROUND: How the brain develops accurate models of the external world and generates appropriate behavioral responses is a vital question of widespread multidisciplinary interest. It is increasingly understood that brain signal variability-posited to enhance perception, facilitate flexible cognitive representations, and improve behavioral outcomes-plays an important role in neural and cognitive development. The ability to perceive, interpret, and respond to complex and dynamic social information is particularly critical for the development of adaptive learning and behavior. Social perception relies on oxytocin-regulated neural networks that emerge early in development. METHODS: We tested the hypothesis that individual differences in the endogenous oxytocinergic system early in life may influence social behavioral outcomes by regulating variability in brain signaling during social perception. In study 1, 55 infants provided a saliva sample at 5 months of age for analysis of individual differences in the oxytocinergic system and underwent electroencephalography (EEG) while listening to human vocalizations at 8 months of age for the assessment of brain signal variability. Infant behavior was assessed via parental report. In study 2, 60 infants provided a saliva sample and underwent EEG while viewing faces and objects and listening to human speech and water sounds at 4 months of age. Infant behavior was assessed via parental report and eye tracking. RESULTS: We show in two independent infant samples that increased brain signal entropy during social perception is in part explained by an epigenetic modification to the oxytocin receptor gene (OXTR) and accounts for significant individual differences in social behavior in the first year of life. These results are measure-, context-, and modality-specific: entropy, not standard deviation, links OXTR methylation and infant behavior; entropy evoked during social perception specifically explains social behavior only; and only entropy evoked during social auditory perception predicts infant vocalization behavior. CONCLUSIONS: Demonstrating these associations in infancy is critical for elucidating the neurobiological mechanisms accounting for individual differences in cognition and behavior relevant to neurodevelopmental disorders. Our results suggest that an epigenetic modification to the oxytocin receptor gene and brain signal entropy are useful indicators of social development and may hold potential diagnostic, therapeutic, and prognostic value.

9.
BMC Med ; 18(1): 292, 2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32919469

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

10.
Proc Natl Acad Sci U S A ; 112(11): 3308-13, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25675509

RESUMEN

In humans, the neuropeptide oxytocin plays a critical role in social and emotional behavior. The actions of this molecule are dependent on a protein that acts as its receptor, which is encoded by the oxytocin receptor gene (OXTR). DNA methylation of OXTR, an epigenetic modification, directly influences gene transcription and is variable in humans. However, the impact of this variability on specific social behaviors is unknown. We hypothesized that variability in OXTR methylation impacts social perceptual processes often linked with oxytocin, such as perception of facial emotions. Using an imaging epigenetic approach, we established a relationship between OXTR methylation and neural activity in response to emotional face processing. Specifically, high levels of OXTR methylation were associated with greater amounts of activity in regions associated with face and emotion processing including amygdala, fusiform, and insula. Importantly, we found that these higher levels of OXTR methylation were also associated with decreased functional coupling of amygdala with regions involved in affect appraisal and emotion regulation. These data indicate that the human endogenous oxytocin system is involved in attenuation of the fear response, corroborating research implicating intranasal oxytocin in the same processes. Our findings highlight the importance of including epigenetic mechanisms in the description of the endogenous oxytocin system and further support a central role for oxytocin in social cognition. This approach linking epigenetic variability with neural endophenotypes may broadly explain individual differences in phenotype including susceptibility or resilience to disease.


Asunto(s)
Ira/fisiología , Encéfalo/fisiología , Epigénesis Genética , Miedo/fisiología , Percepción/fisiología , Receptores de Oxitocina/genética , Adulto , Amígdala del Cerebelo/fisiología , Metilación de ADN/genética , Emociones , Cara , Femenino , Humanos , Masculino , Procesos Mentales , Red Nerviosa/fisiología , Receptores de Oxitocina/metabolismo , Adulto Joven
11.
Am J Physiol Heart Circ Physiol ; 312(5): H943-H958, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28283548

RESUMEN

Atherosclerotic plaque rupture with subsequent embolic events is a major cause of sudden death from myocardial infarction or stroke. Although smooth muscle cells (SMCs) produce and respond to collagens in vitro, there is no direct evidence in vivo that SMCs are a crucial source of collagens and that this impacts lesion development or fibrous cap formation. We sought to determine how conditional SMC-specific knockout of collagen type XV (COL15A1) in SMC lineage tracing mice affects advanced lesion formation given that 1) we have previously identified a Col15a1 sequence variant associated with age-related atherosclerosis, 2) COL15A1 is a matrix organizer enhancing tissue structural integrity, and 3) small interfering RNA-mediated Col15a1 knockdown increased migration and decreased proliferation of cultured human SMCs. We hypothesized that SMC-derived COL15A1 is critical in advanced lesions, specifically in fibrous cap formation. Surprisingly, we demonstrated that SMC-specific Col15a1 knockout mice fed a Western diet for 18 wk failed to form advanced lesions. SMC-specific Col15a1 knockout resulted in lesions reduced in size by 78%, with marked reductions in numbers and proliferating SMCs, and lacked a SMC and extracellular matrix-rich lesion or fibrous cap. In vivo RNA-seq analyses on SMC Col15a1 knockout and wild-type lesions suggested that a mechanism for these effects is through global repression of multiple proatherogenic inflammatory pathways involved in lesion development. These results provide the first direct evidence that a SMC-derived collagen, COL15A1, is critical during lesion pathogenesis, but, contrary to expectations, its loss resulted in marked attenuation rather than exacerbation of lesion pathogenesis.NEW & NOTEWORTHY We report the first direct in vivo evidence that a smooth muscle cell (SMC)-produced collagen, collagen type XV (COL15A1), is critical for atherosclerotic lesion development. SMC Col15a1 knockout markedly attenuated advanced lesion formation, likely through reducing SMC proliferation and impairing multiple proatherogenic inflammatory processes.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , Colágeno/genética , Miocitos del Músculo Liso/patología , Envejecimiento/patología , Animales , Aorta/citología , Linaje de la Célula , Dieta Aterogénica , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miografía , Rigidez Vascular
12.
Hum Mol Genet ; 22(25): 5107-20, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23912340

RESUMEN

Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype. Global hypomethylation of proliferating aortic SMCs and concomitant decrease of DNMT1 expression were identified in culture during passage. An epigenome screen identified regions of the genome that were hypomethylated during proliferation and a region containing Collagen, type XV, alpha 1 (COL15A1) was selected by 'genomic convergence' for characterization. COL15A1 transcript and protein levels increased with passage-dependent decreases in DNA methylation and the transcript was sensitive to treatment with 5-Aza-2'-deoxycytidine, suggesting DNA methylation-mediated gene expression. Phenotypically, knockdown of COL15A1 increased SMC migration and decreased proliferation and Col15a1 expression was induced in an atherosclerotic lesion and localized to the atherosclerotic cap. A sequence variant in COL15A1 that is significantly associated with atherosclerosis (rs4142986, P = 0.017, OR = 1.434) was methylated and methylation of the risk allele correlated with decreased gene expression and increased atherosclerosis in human aorta. In summary, hypomethylation of COL15A1 occurs during SMC proliferation and the consequent increased gene expression may impact SMC phenotype and atherosclerosis formation. Hypomethylated genes, such as COL15A1, provide evidence for concomitant epigenetic regulation and genetic susceptibility, and define a class of causal targets that sit at the intersection of genetic and epigenetic predisposition in the etiology of complex disease.


Asunto(s)
Aterosclerosis/genética , Senescencia Celular/genética , Colágeno/genética , Epigénesis Genética , Aterosclerosis/patología , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Metilación de ADN/genética , Regulación de la Expresión Génica , Humanos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Neointima/genética
13.
Reprod Sci ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862858

RESUMEN

Postpartum hemorrhage, or excessive bleeding after birth, is a leading cause of maternal morbidity. A major cause of postpartum hemorrhage is uterine atony, tiring of the uterus which leads to ineffective contractions. Uterine contractions depend on oxytocin signaling in the myometrium, which in turn depends on expression of the oxytocin receptor (OXTR). Both genetic and epigenetic factors related to the oxytocin receptor are associated with risk of postpartum hemorrhage, but a mechanism relating these factors to oxytocin receptor activity in myometrium remains unclear. We report a genetic by epigenetic interaction whereby the relationship between DNA hydroxymethylation and OXTR gene expression depends on a common OXTR gene variant (rs53576). We also provide evidence that a similar genetic by epigenetic interaction using blood-derived DNA methylation is associated with relevant clinical outcomes: quantity of oxytocin administration and odds for postpartum hemorrhage. These results provide new avenues for predicting how women will respond to pharmacological agents in the prevention and treatment of postpartum hemorrhage.

14.
Sci Rep ; 14(1): 9646, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671048

RESUMEN

While chronological age is a strong predictor for health-related risk factors, it is an incomplete metric that fails to fully characterize the unique aging process of individuals with different genetic makeup, neurodevelopment, and environmental experiences. Recent advances in epigenomic array technologies have made it possible to generate DNA methylation-based biomarkers of biological aging, which may be useful in predicting a myriad of cognitive abilities and functional brain network organization across older individuals. It is currently unclear which cognitive domains are negatively correlated with epigenetic age above and beyond chronological age, and it is unknown if functional brain organization is an important mechanism for explaining these associations. In this study, individuals with accelerated epigenetic age (i.e. AgeAccelGrim) performed worse on tasks that spanned a wide variety of cognitive faculties including both fluid and crystallized intelligence (N = 103, average age = 68.98 years, 73 females, 30 males). Additionally, fMRI connectome-based predictive models suggested a mediating mechanism of functional connectivity on epigenetic age acceleration-cognition associations primarily in medial temporal lobe and limbic structures. This research highlights the important role of epigenetic aging processes on the development and maintenance of healthy cognitive capacities and function of the aging brain.


Asunto(s)
Envejecimiento , Encéfalo , Cognición , Conectoma , Epigénesis Genética , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cognición/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Persona de Mediana Edad , Metilación de ADN , Anciano de 80 o más Años , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen
15.
bioRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461677

RESUMEN

Social isolation is one of the strongest predictors of increased risk of mortality in older adulthood. The ability to form and maintain the social relationships that mitigate this risk is partially regulated by the oxytocinergic system and one's ability to attend to and process social information. We have previously shown that an epigenetic change to the DNA of the oxytocin receptor gene ( OXTR methylation) affects the salience of social information in young adults. Little is known about how the oxytocinergic system ages and what effect this aging system has on social cognitive abilities throughout the lifespan. Here we explore age-related differences in the association between neural response during selective social attention and OXTR DNA methylation in young and older adults. We find that older adults activate diffuse areas of visual cortex and dorsolateral prefrontal cortex during selective social attention, consistent with the dedifferentiation and compensatory neural activation commonly reported in aging. We find a significant age-by- OXTR methylation interaction on neural response when attending to social stimuli in a complex display; young adults display a positive association between OXTR methylation and neural activation, replicating our prior finding that young adults with presumed diminished endogenous access to oxytocin recruit regions of the attentional cortex to a greater extent. This association does not hold for older adults. Instead, perceived social support interacts with OXTR methylation to influence neural response during selective social attention. These data suggest that environmental factors like social support moderate biological processes in aging and highlight the importance of a lifespan perspective for understanding associations between individual differences in the oxytocinergic system, neural function, and social behavior.

16.
Commun Med (Lond) ; 3(1): 11, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707542

RESUMEN

BACKGROUND: The oxytocin receptor gene (OXTR) is regulated, in part, by DNA methylation. This mechanism has implications for uterine contractility during labor and for prevention or treatment of postpartum hemorrhage, an important contributor to global maternal morbidity and mortality. METHODS: We measured and compared the level of OXTR DNA methylation between matched blood and uterine myometrium to evaluate blood as an indicator of uterine methylation status using targeted pyrosequencing and sites from the Illumina EPIC Array. Next, we tested for OXTR DNA methylation differences in blood between individuals who experienced a postpartum hemorrhage arising from uterine atony and matched controls following vaginal birth. Bivariate statistical tests, generalized linear modeling and Poisson regression were used in the analyses. RESULTS: Here we show a significant positive correlation between blood and uterine DNA methylation levels at several OXTR loci. Females with higher OXTR DNA methylation in blood had required significantly more exogenous oxytocin during parturition. With higher DNA methylation, those who had oxytocin administered during labor had significantly greater relative risk for postpartum hemorrhage (IRR 2.95, 95% CI 1.53-5.71). CONCLUSIONS: We provide evidence that epigenetic variability in OXTR is associated with the amount of oxytocin administered during parturition and moderates subsequent postpartum hemorrhage. Methylation can be measured using a peripheral tissue, suggesting potential use in identifying individuals susceptible to postpartum hemorrhage. Future studies are needed to quantify myometrial gene expression in connection with OXTR methylation.


Oxytocin is a hormone produced by the body during childbirth and can cause contractions of the uterus (womb). Synthetic oxytocin is used as a medicine for stimulating or increasing uterine contractions and controlling bleeding after birth. The oxytocin receptor gene, which enables the body to use oxytocin, can be altered by a chemical modification called DNA methylation. We found that the those who bled more during childbirth had higher oxytocin receptor gene DNA methylation compared to those who had normal bleeding. Higher methylation was also linked to needing greater amounts of oxytocin during labor to achieve vaginal birth and control bleeding. These findings identify that certain problems during birth may be related to oxytocin receptor gene methylation. This research could lead to improvements in how versions of oxytocin are used during the birth process by using the amount of oxytocin receptor gene methylation to predict people who may have problems with uterine contractions or bleeding.

17.
Front Aging Neurosci ; 15: 1252478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020783

RESUMEN

Introduction: Social isolation is one of the strongest predictors of increased risk of mortality in older adulthood. The ability to form and maintain the social relationships that mitigate this risk is partially regulated by the oxytocinergic system and one's ability to attend to and process social information. We have previously shown that an epigenetic change to the DNA of the oxytocin receptor gene (OXTR methylation) affects the salience of social information in young adults. Little is known about how the oxytocinergic system ages and what effect this aging system has on social cognitive abilities throughout the lifespan. Methods: Here we explored age-related differences in the association between neural response during selective social attention and OXTR DNA methylation in young (age 18-31) and older (age 58-81) adults. Participants underwent fMRI during a selective social attention task and provided a DNA sample for the assessment of OXTR methylation. Results and Discussion: We found that older adults activated diffuse areas of visual cortex and dorsolateral prefrontal cortex during selective social attention, consistent with the dedifferentiation and compensatory neural activation commonly reported in aging. We found a significant age-by-OXTR methylation interaction on neural response when attending to social stimuli in a complex display; young adults displayed a positive association between OXTR methylation and neural activation, replicating our prior finding that young adults with presumed diminished endogenous access to oxytocin recruit regions of the attentional cortex to a greater extent. This association did not hold for older adults. Instead, perceived social support interacted with OXTR methylation to influence neural response during selective social attention. These data suggest that environmental factors like social support moderate biological processes in aging and highlight the importance of a lifespan perspective for understanding associations between individual differences in the oxytocinergic system, neural function, and social behavior.

18.
Front Genet ; 14: 1225197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705612

RESUMEN

The neurohormone oxytocin regulates many aspects of physiology primarily by binding to its receptor, the oxytocin receptor. The oxytocin receptor gene (Oxtr) has been shown to have alternative transcripts in the mouse brain which may each have different biological functions or be used in specific contexts. A popular animal model for studying oxytocin-dependent social behaviors is the prairie vole, a biparental and monogamous rodent. Alternative transcriptional capacity of Oxtr in prairie voles is unknown. We used 5' rapid amplification of cDNA ends to identify alternative Oxtr transcription start sites in prairie vole brain tissue and uterine tissue. We then validated expression of specific transcripts in fetal brains and assessed the impact of exogenous oxytocin administration in utero on offspring brain development. We identified seven distinct Oxtr transcripts, all of which are present in both brain and uterine tissue. We then demonstrated that maternal oxytocin administration alters expression of a specific subset of Oxtr transcripts and that these different transcripts are under unique epigenetic regulation, such that in the perinatal period only one of the alternative transcripts is associated with DNA methylation in the Oxtr promoter. These data establish the existence of multiple Oxtr transcripts in prairie vole brain and uterine tissue and implicate oxytocin in the regulation of alternative transcript expression. These data have significant implications for our understanding of null mutant models in both mice and voles and translation in human birth and behavior.

19.
Soc Cogn Affect Neurosci ; 18(1)2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37930994

RESUMEN

Social attention involves selectively attending to and encoding socially relevant information. We investigated the neural systems underlying the wide range of variability in both social attention ability and social experience in a neurotypical sample. Participants performed a selective social attention task, while undergoing fMRI and completed self-report measures of social functioning. Using connectome-based predictive modeling, we demonstrated that individual differences in whole-brain functional connectivity patterns during selective attention to faces predicted task performance. Individuals with more cerebellar-occipital connectivity performed better on the social attention task, suggesting more efficient social information processing. Then, we estimated latent communities of autistic and socially anxious traits using exploratory graph analysis to decompose heterogeneity in social functioning between individuals. Connectivity strength within the identified social attention network was associated with social skills, such that more temporal-parietal connectivity predicted fewer challenges with social communication and interaction. These findings demonstrate that individual differences in functional connectivity strength during a selective social attention task are related to varying levels of self-reported social skill.


Asunto(s)
Conectoma , Habilidades Sociales , Humanos , Individualidad , Encéfalo , Cognición , Imagen por Resonancia Magnética , Atención
20.
Transl Psychiatry ; 13(1): 91, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914631

RESUMEN

Functional connectivity between the amygdala and the medial prefrontal cortex (mPFC) has been identified as a neural substrate of emotion regulation that undergoes changes throughout development, with a mature profile typically emerging at 10 years of age. Maternal bonding in childhood has been shown to buffer amygdala reactivity and to influence the trajectory of amygdala-mPFC coupling. The oxytocinergic system is critical in the development of social behavior and maternal bonding. Early-life parental care influences the methylation status of the oxytocin receptor (OXTRm) in animal models and humans, and higher OXTRm is associated with lower amygdala-PFC functional connectivity in adults. Using a neuroimaging-epigenetic approach, we investigated saliva-derived OXTRm as a biological marker of structural and functional connectivity maturation in 57 typically developing children (P < 0.05). We utilized seed-based connectivity analysis during a novel abstract movie paradigm and find that higher levels of OXTRm are associated with a more adult-like functional connectivity profile. Concurrently, more adult-like functional connectivity was associated with higher reported self-control and more diffusion streamlines between the amygdala and mPFC. OXTRm mediates the association between structural and functional connectivity with higher levels of OXTRm being associated with more streamlines. Lastly, we also find that lower OXTRm blunts the association between amygdala-mPFC connectivity and future internalizing behaviors in early adolescence. These findings implicate OXTRm as a biological marker at the interface of the social environment and amygdala-mPFC connectivity in emotional and behavioral regulation. Ultimately, identification of neurobiological markers may lead to earlier detection of children at risk for socio-emotional dysfunction.


Asunto(s)
Amígdala del Cerebelo , Imagen por Resonancia Magnética , Adulto , Niño , Adolescente , Animales , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Emociones/fisiología , Corteza Prefrontal/fisiología , Epigénesis Genética , Receptores de Oxitocina/genética , Vías Nerviosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA