Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792143

RESUMEN

Strigolactones (SLs) have potential to be used in sustainable agriculture to mitigate various stresses that plants have to deal with. The natural SLs, as well as the synthetic analogs, are difficult to obtain in sufficient amounts for practical applications. At the same time, fluorescent SLs would be useful for the mechanistic understanding of their effects based on bio-imaging or spectroscopic techniques. In this study, new fluorescent SL mimics containing a substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive furan-2-one moiety were prepared. The structural, spectroscopic, and biological activity of the new SL mimics on phytopathogens were investigated and compared with previously synthetized fluorescent SL mimics. The chemical group at the C-6 position of the naphthalimide ring influences the fluorescence parameters. All SL mimics showed effects similar to GR24 on phytopathogens, indicating their suitability for practical applications. The pattern of the biological activity depended on the fungal species, SL mimic and concentration, and hyphal order. This dependence is probably related to the specificity of each fungal receptor-SL mimic interaction, which will have to be analyzed in-depth. Based on the biological properties and spectroscopic particularities, one SL mimic could be a good candidate for microscopic and spectroscopic investigations.


Asunto(s)
Lactonas , Naftalimidas , Naftalimidas/química , Naftalimidas/síntesis química , Naftalimidas/farmacología , Lactonas/química , Lactonas/farmacología , Lactonas/síntesis química , Estructura Molecular , Ascomicetos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Rhizoctonia/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos
2.
Molecules ; 28(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894539

RESUMEN

In terrestrial plants, strigolactones act as multifunctional endo- and exo-signals. On microalgae, the strigolactones determine akin effects: induce symbiosis formation with fungi and bacteria and enhance photosynthesis efficiency and accumulation of biomass. This work aims to synthesize and identify strigolactone mimics that promote photosynthesis and biomass accumulation in microalgae with biotechnological potential. Novel strigolactone mimics easily accessible in significant amounts were prepared and fully characterized. The first two novel compounds contain 3,5-disubstituted aryloxy moieties connected to the bioactive furan-2-one ring. In the second group of compounds, a benzothiazole ring is connected directly through the cyclic nitrogen atom to the bioactive furan-2-one ring. The novel strigolactone mimics were tested on Chlorella sorokiniana NIVA-CHL 176. All tested strigolactones increased the accumulation of chlorophyll b in microalgae biomass. The SL-F3 mimic, 3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)-3H-benzothiazol-2-one (7), proved the most efficient. This compound, applied at a concentration of 10-7 M, determined a significant biomass accumulation, higher by more than 15% compared to untreated control, and improved the quantum yield efficiency of photosystem II. SL-F2 mimic, 5-(3,5-dibromophenoxy)-3-methyl-5H-furan-2-one (4), applied at a concentration of 10-9 M, improved protein production and slightly stimulated biomass accumulation. Potential utilization of the new strigolactone mimics as microalgae biostimulants is discussed.


Asunto(s)
Chlorella , Microalgas , Chlorella/metabolismo , Biomasa , Fotosíntesis , Microalgas/metabolismo , Furanos/farmacología , Furanos/metabolismo
3.
Mar Drugs ; 20(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35621978

RESUMEN

Humic substances (HS) act as biostimulants for terrestrial photosynthetic organisms. Their effects on plants are related to specific HS features: pH and redox buffering activities, (pseudo)emulsifying and surfactant characteristics, capacity to bind metallic ions and to encapsulate labile hydrophobic molecules, ability to adsorb to the wall structures of cells. The specific properties of HS result from the complexity of their supramolecular structure. This structure is more dynamic in aqueous solutions/suspensions than in soil, which enhances the specific characteristics of HS. Therefore, HS effects on microalgae are more pronounced than on terrestrial plants. The reported HS effects on microalgae include increased ionic nutrient availability, improved protection against abiotic stress, including against various chemical pollutants and ionic species of potentially toxic elements, higher accumulation of value-added ingredients, and enhanced bio-flocculation. These HS effects are similar to those on terrestrial plants and could be considered microalgal biostimulant effects. Such biostimulant effects are underutilized in current microalgal biotechnology. This review presents knowledge related to interactions between microalgae and humic substances and analyzes the potential of HS to enhance the productivity and profitability of microalgal biotechnology.


Asunto(s)
Contaminantes Ambientales , Microalgas , Biotecnología , Sustancias Húmicas/análisis , Plantas , Suelo/química
4.
Nucleic Acids Res ; 44(2): 954-68, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26657627

RESUMEN

The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function.


Asunto(s)
Proteínas Bacterianas/química , ADN Helicasas/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/química , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Geobacillus stearothermophilus/enzimología , Modelos Moleculares , Mutación , Nucleótidos/metabolismo , Estructura Terciaria de Proteína , Marcadores de Spin , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
5.
Nucleic Acids Res ; 44(6): 2806-15, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26896802

RESUMEN

The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5' to 3' helicase with an essential iron-sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD.


Asunto(s)
Proteínas Arqueales/química , Reparación del ADN , ADN de Archaea/química , ADN de Cadena Simple/química , Thermoplasma/química , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Secuencias de Aminoácidos , Proteínas Arqueales/antagonistas & inhibidores , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Daño del ADN , ADN de Archaea/genética , ADN de Archaea/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus/química , Sulfolobus/enzimología , Thermoplasma/enzimología , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
6.
Biol Chem ; 398(5-6): 701-707, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28141542

RESUMEN

Ras-mediated apoptotic signaling is expected to be mediated via Rassf-MST complexes, but the system has been poorly characterized in vitro until now. Here we demonstrate that active H-Ras, Nore1A and MST1 form a stable ternary complex in vitro without other external factors, Nore1A interacting simultaneously with H-Ras and MST1 via its RBD and SARAH domain, respectively. Moreover, our data show for the first time that the SARAH domain of Nore1A plays a role in the Nore1A binding to H-Ras. Finally, we analyze the relation between the electrostatic and hydrophobic forces and kinetic constants of the Nore1A - H-Ras complex.


Asunto(s)
Apoptosis , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas ras/metabolismo , Cinética , Transducción de Señal
7.
Phys Chem Chem Phys ; 18(43): 29698-29708, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27806138

RESUMEN

The Hofmeister series is a universal homologous series to rank ion-specific effects on biomolecular properties such as protein stability or aggregation propensity. Although this ranking is widely used, outliers and exceptions are discussed controversially and a molecular level understanding is still lacking. Studying the thermal unfolding equilibrium of RNase A, we here show that this ambiguity arises from the oversimplified approach to determine the ion rankings. Instead of measuring salt effects on a single point of the protein folding stability curve (e.g. the melting point Tm), we here consider the salt induced shifts of the entire protein 'stability curve' (the temperature dependence of the unfolding free energy change, ΔGu(T)). We found multiple intersections of these curves, pinpointing a widely ignored fact: the Hofmeister cation and anion rankings are temperature dependent. We further developed a novel classification scheme of cosolute effects based on their thermodynamic fingerprints, reaching beyond salt effects to non-electrolytes.

8.
Sensors (Basel) ; 16(11)2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27886072

RESUMEN

For the first time the electropolymerization of 2,6-dihydroxynaphthalene (2,6-DHN) on a screen printed carbon electrode (SPCE) was investigated and evaluated for peroxynitrite (PON) detection. Cyclic voltammetry was used to electrodeposit the poly(2,6-DHN) on the carbon electrode surface. The surface morphology and structure of poly(2,6-DHN) film were investigated by SEM and FTIR analysis, and the electrochemical features by cyclic voltammetry. The poly(2,6-DHN)/SPCE sensor showed excellent electrocatalytic activity for PON oxidation in alkaline solutions at very low potentials (0-100 mV vs. Ag/AgCl pseudoreference). An amperometric FIA (flow injection analysis) system based on the developed sensor was optimized for PON measurements and a linear concentration range from 2 to 300 µM PON, with a LOD of 0.2 µM, was achieved. The optimized sensor inserted in the FIA system exhibited good sensitivity (4.12 nA·µM-1), selectivity, stability and intra-/inter-electrode reproducibility for PON determination.

9.
Front Plant Sci ; 15: 1349573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835865

RESUMEN

Seed coating ensures the targeted delivery of various compounds from the early stages of development to increase crop quality and yield. Silicon and alginate are known to have plant biostimulant effects. Rice husk (RH) is a significant source of biosilica. In this study, we coated mung bean seeds with an alginate-glycerol-sorbitol (AGS) film with embedded biogenic nanosilica (SiNPs) from RH, with significant plant biostimulant activity. After dilute acid hydrolysis of ground RH in a temperature-controlled hermetic reactor, the resulting RH substrate was neutralized and calcined at 650°C. The structural and compositional characteristics of the native RH, the intermediate substrate, and SiNPs, as well as the release of soluble Si from SiNPs, were investigated. The film for seed coating was optimized using a mixture design with three factors. The physiological properties were assessed in the absence and the presence of 50 mM salt added from the beginning. The main parameters investigated were the growth, development, metabolic activity, reactive oxygen species (ROS) metabolism, and the Si content of seedlings. The results evidenced a homogeneous AGS film formation embedding 50-nm amorphous SiNPs having Si-O-Si and Si-OH bonds, 0.347 cm3/g CPV (cumulative pore volume), and 240 m2/g SSA (specific surface area). The coating film has remarkable properties of enhancing the metabolic, proton pump activities and ROS scavenging of mung seedlings under salt stress. The study shows that the RH biogenic SiNPs can be efficiently applied, together with the optimized, beneficial alginate-based film, as plant biostimulants that alleviate saline stress from the first stages of plant development.

10.
J Funct Biomater ; 15(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057323

RESUMEN

Selenium nanoparticles (SeNPs) have specific properties that result from their biosynthesis particularities. Chitosan can prevent pathogenic biofilm development. A wide palette of bacterial nanocellulose (BNC) biological and physical-chemical properties are known. The aim of this study was to develop a hydrogel formulation (SeBNCSFa) based on ferulic acid-grafted chitosan and bacterial nanocellulose (BNC) enriched with SeNPs from Kombucha fermentation (SeNPsK), which could be used as an adjuvant for oral implant integration and other applications. The grafted chitosan and SeBNCSFa were characterized by biochemical and physical-chemical methods. The cell viability and proliferation of HGF-1 gingival fibroblasts were investigated, as well as their in vitro antioxidant activity. The inflammatory response was determined by enzyme-linked immunosorbent assay (ELISA) of the proinflammatory mediators (IL-6, TNF-α, and IL-1ß) in cell culture medium. Likewise, the amount of nitric oxide released was measured by the Griess reaction. The antimicrobial activity was also investigated. The grafting degree with ferulic acid was approximately 1.780 ± 0.07% of the total chitosan monomeric units, assuming single-site grafting per monomer. Fourier-transform infrared spectroscopy evidenced a convolution of BNC and grafted chitosan spectra, and X-ray diffraction analysis highlighted an amorphous rearrangement of the diffraction patterns, suggesting multiple interactions. The hydrogel showed a high degree of cytocompatibility, and enhanced antioxidant, anti-inflammatory, and antimicrobial potentials.

11.
Biochemistry ; 52(6): 1045-54, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23331050

RESUMEN

Tumor suppressor Nore1, its acronym coming from novel Ras effector, is one of the 10 members of the Rassf (Ras association domain family) protein family that have been identified. It is expressed as two mRNA splice variants, Nore1A and a shorter isoform, Nore1B. It forms homo- and heterocomplexes through its C-terminal SARAH (Sav/Rassf/Hpo) domain. The oligomeric state of Nore1 and other SARAH domain-containing proteins is important for their cellular activities. However, there are few experimental data addressing the structural and biophysical characterization of these domains. In this study, we show that the recombinant SARAH domain of Nore1 crystallizes as an antiparallel homodimer with representative characteristics of coiled coils. As is typical for coiled coils, the SARAH domain shows a heptad register, yet the heptad register is interrupted by two stutters. The comparisons of the heptad register of Nore1-SARAH with the primary structure of Rassf1-4, Rassf6, MST1, MST2, and WW45 indicate that these proteins have a heptad register interrupted by two stutters, too. Moreover, on the basis of the structure of Nore1-SARAH, we also generate structural models for Rassf1 and Rassf3. These models indicate that Rassf1- and Rassf3-SARAH form structures very similar to that of Nore1-SARAH. In addition, we show that, as we have previously found for MST1, the SARAH domain of Nore1 undergoes association-dependent folding. Nevertheless, the Nore1 homodimer has a lower affinity and thermodynamic stability than the MST1 homodimer, while the monomer is slightly more stable. Our experimental results along with our theoretical considerations indicate that the SARAH domain is merely a dimerization domain and that the differences between the individual sequences lead to different stabilities and affinities that might have an important functional role.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/química , Factor de Crecimiento de Hepatocito/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/química , Proteínas Supresoras de Tumor/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas de Ciclo Celular/metabolismo , Dicroismo Circular , Dimerización , Factor de Crecimiento de Hepatocito/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Homología de Secuencia de Aminoácido , Serina-Treonina Quinasa 3 , Transducción de Señal , Termodinámica , Proteínas Supresoras de Tumor/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-36767462

RESUMEN

The recovery of plant mineral nutrients from the bio-based value chains is essential for a sustainable, circular bioeconomy, wherein resources are (re)used sustainably. The widest used approach is to recover plant nutrients on the last stage of biomass utilization processes-e.g., from ash, wastewater, or anaerobic digestate. The best approach is to recover mineral nutrients from the initial stages of biomass biorefinery, especially during biomass pre-treatments. Our paper aims to evaluate the nutrient recovery solutions from a trans-sectorial perspective, including biomass processing and the agricultural use of recovered nutrients. Several solutions integrated with the biomass pre-treatment stage, such as leaching/bioleaching, recovery from pre-treatment neoteric solvents, ionic liquids (ILs), and deep eutectic solvents (DESs) or integrated with hydrothermal treatments are discussed. Reducing mineral contents on silicon, phosphorus, and nitrogen biomass before the core biorefinery processes improves processability and yield and reduces corrosion and fouling effects. The recovered minerals are used as bio-based fertilizers or as silica-based plant biostimulants, with economic and environmental benefits.


Asunto(s)
Minerales , Aguas Residuales , Biomasa , Fósforo , Plantas , Nutrientes
13.
Antioxidants (Basel) ; 12(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759982

RESUMEN

In our previous research, we demonstrated that honey and its biomimetic natural deep eutectic solvent (NaDES) modulate the antioxidant activity (AOA) of the raspberry extract (RE). In this study, we evaluated the AOA behaviour of the mixture honey/NaDES-honeysuckle (Lonicera caprifolium, LFL) extract and compared it with the mixture honey/NaDES-RE. These two extracts have similar major flavonoids and hydroxycinnamic acid compounds but differ in their total content and the presence of anthocyanins in RE. Therefore, it was of interest to see if the modulation of the LFL polyphenols by honey/NaDES was similar to that of RE. We also evaluated the prebiotic activity of these mixtures and individual components on Limosilactobacillus reuteri DSM 20016. Although honey/NaDES modulated the AOA of both extracts, from synergism to antagonism, the modulation was different between the two extracts for some AOA activities. Honey/NaDES mixtures enriched with LFL and RE did not show significant differences in bacterial growth stimulation. However, at a concentration of 45 mg/mL, the honey -LFL mixture exhibited a higher effect compared to the honey-RE mixture. The antioxidant and prebiotic properties of mixtures between honey and polyphenol-rich extracts are determined by multiple interactions in complex chemical systems.

14.
Antioxidants (Basel) ; 12(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37760014

RESUMEN

Biogenic selenium nanoparticles (SeNPs) have been shown to exhibit increased bioavailability. Fermentation of pollen by a symbiotic culture of bacteria and yeasts (SCOBY/Kombucha) leads to the release of pollen content and enhances the prebiotic and probiotic effects of Kombucha. The aim of this study was to fortify Kombucha beverage with SeNPs formed in situ by Kombucha fermentation with pollen. Response Surface Methodology (RSM) was used to optimize the biosynthesis of SeNPs and the pollen-fermented Kombucha beverage. SeNPs were characterized by Transmission electron microscopy energy-dispersive X-ray spectroscopy (TEM-EDX), Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), and Zeta potential. The pollen-fermented Kombucha beverage enriched with SeNPs was characterized by measuring the total phenolic content, antioxidant activity, soluble silicon, saccharides, lactic acid, and the total content of Se0. The polyphenols were identified by liquid chromatography-mass spectrometry (LC-MS). The pollen and the bacterial (nano)cellulose were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), FTIR, and X-Ray diffraction (XRD). We also assessed the in vitro biocompatibility in terms of gingival fibroblast viability and proliferation, as well as the antioxidant activity of SeNPs and the pollen-fermented Kombucha beverage enriched with SeNPs. The results highlight their increased biological performance in this regard.

15.
Plants (Basel) ; 12(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37631226

RESUMEN

The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin-Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits.

16.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38256857

RESUMEN

Phytosynthesized selenium nanoparticles (SeNPs) are less toxic than the inorganic salts of selenium and show high antioxidant and antibacterial activity. Chitosan prevents microbial biofilm formation and can also determine microbial biofilm dispersal. Never-dried bacterial nanocellulose (NDBNC) is an efficient carrier of bioactive compounds and a flexible nanofibrillar hydrophilic biopolymer. This study aimed to develop a selenium-enriched hydrogel nanoformulation (Se-HNF) based on NDBNC from kombucha fermentation and fungal chitosan with embedded biogenic SeNPs phytosynthesized by an aqueous extract of sea buckthorn leaves (SbLEx)-SeNPsSb-in order to both disperse gingival dysbiotic biofilm and prevent its development. We determined the total phenolic content and antioxidant activity of SbLEx. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) were used for the identification of polyphenols from SbLEx. SeNPsSb were characterized by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX), dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) in small- and wide-angle X-ray scattering (SAXS and WAXS). The hydrogel nanoformulation with embedded SeNPsSb was characterized by SEM, FTIR, XRD, rheology, mucin binding efficiency, contact angle and interfacial tension measurements. We also assessed the in vitro biocompatibility, antioxidant activity and antimicrobial and antibiofilm potential of SeNPsSb and Se-HNF. TEM, DLS and SAXS evidenced polydisperse SeNPsSb, whereas FTIR highlighted a heterogeneous biocorona with various biocompounds. The contact angle on the polar surface was smaller (52.82 ± 1.23°) than that obtained on the non-polar surface (73.85 ± 0.39°). The interfacial tension was 97.6 ± 0.47 mN/m. The mucin binding efficiency of Se-HNF decreased as the amount of hydrogel decreased, and the SEM analysis showed a relatively compact structure upon mucin contact. FTIR and XRD analyses of Se-HNF evidenced an interaction between BNC and CS through characteristic peak shifting, and the rheological measurements highlighted a pseudoplastic behavior, 0.186 N adhesion force and 0.386 adhesion energy. The results showed a high degree of cytocompatibility and the significant antioxidant and antimicrobial efficiency of SeNPsSb and Se-HNF.

17.
Foods ; 12(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38002214

RESUMEN

The objective of this work was to develop a sustainable process for the extraction of anthocyanins from red cabbage byproducts using, for the first time, apple vinegar in extractant composition. Our results showed that the mixture 50% (v/v) ethanol-water, acidified with apple vinegar, used in the proportion of 25 g of red cabbage by-products per 100 mL of solvent, was the best solvent for the preparation of an anthocyanin extract with good stability for food applications. The chemical characterization of this extract was performed by FTIR, UV-VIS, HPLC-DAD, and ICP-OES. The stability was evaluated by determining the dynamics of the total polyphenol content (TPC) and the total monomeric anthocyanin pigment content (TAC) during storage. On the basis of the statistical method for analysis of variance (ANOVA), the standard deviation between subsamples and the repeatability standard deviation were determined. The detection limit of the stability test of TPC was 3.68 mg GAE/100 g DW and that of TAC was 0.79 mg Cyd-3-Glu/100 g DW. The red cabbage extract has high TPC and TAC, good stability, and significant application potential. The extracted residues, depleted of anthocyanins and polyphenols with potential allelopathic risks, fulfill the requirements for a fertilizing product and could be used for soil treatment.

18.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38139798

RESUMEN

Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica powder, lactic acid, citric acid) in order to support the vaginal microbiota homeostasis. The nanofibrillar phyto-hydrogel systems developed using the biocompatible polymers chitosan (CS), never-dried bacterial nanocellulose (NDBNC), and Poloxamer 407 (PX) incorporated the water-soluble bioactive components in the NDBNC hydrophilic fraction and the hydrophobic components in the hydrophobic core of the PX fraction. Two NDBNC-PX hydrogels and one NDBNC-PX-CS hydrogel were structurally and physical-chemically characterized using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheology. The hydrogels were also evaluated in terms of thermo-responsive properties, mucoadhesion, biocompatibility, and prebiotic and antimicrobial effects. The mucin binding efficiency of hydrogel base systems was determined by the periodic acid/Schiff base (PAS) assay. Biocompatibility of hydrogel systems was determined by the MTT test using mouse fibroblasts. The prebiotic activity was determined using the probiotic strains Limosilactobacillus reuteri and Lactiplantibacillus plantarum subsp. plantarum. Antimicrobial activity was also assessed using relevant microbial strains, respectively, E. coli and C. albicans. TEM evidenced PX micelles of around 20 nm on NDBNC nanofibrils. The FTIR and XRD analyses revealed that the binary hydrogels are dominated by PX signals, and that the ternary hydrogel is dominated by CS, with additional particular fingerprints for the biocompounds and the hydrogel interaction with mucin. Rheology evidenced the gel transition temperatures of 18-22 °C for the binary hydrogels with thixotropic behavior and, respectively, no gel transition, with rheopectic behavior for the ternary hydrogel. The adhesion energies of the binary and ternary hydrogels were evaluated to be around 1.2 J/m2 and 9.1 J/m2, respectively. The hydrogels exhibited a high degree of biocompatibility, with the potential to support cell proliferation and also to promote the growth of lactobacilli. The hydrogel systems also presented significant antimicrobial and antibiofilm activity.

19.
Antioxidants (Basel) ; 11(11)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36358566

RESUMEN

Honey is a highly valued natural product with antioxidant, antimicrobial and anti-inflammatory properties. However, its antioxidant activity (AOA) is not as high as that of other honeybee products, such as propolis. Several polyphenol-honey formulations have been proposed up to now, most of them using maceration of biomass in honey or mixtures with liquid extracts, which either limit polyphenols bioavailability or destroy the characteristics of honey. To improve the health benefits of honey by increasing AOA and keeping its structural and sensory properties, we propose its enrichment in a polyphenol extract of raspberry after solvent evaporation. A honey-biomimetic natural deep eutectic solvent (NaDES) was prepared and compared with honey. The main polyphenols found in the raspberry extract were tested in combination with honey and NaDES, respectively. The AOA was determined by DPPH, ABTS, CUPRAC, and FRAP methods. The AOA behaviour of honey-polyphenol mixtures varied from synergism to antagonism, being influenced by the AOA method, polyphenol type, and/or mixture concentration. The honey-biomimetic NaDES resulted in similar AOA behaviour as with honey mixed with polyphenols. Honey seems to have additional properties that increase synergism or reduce antagonism in some cases. Honey and its biomimetic NaDES modulate AOA of polyphenols extract.

20.
Biochemistry ; 50(51): 10990-1000, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22112013

RESUMEN

The serine/threonine mammalian sterile 20-like kinase (MST1) is involved in promotion of caspase-dependent and independent apoptosis. Phosphorylation and oligomerization are required for its activation. The oligomerization domain, denoted as SARAH domain, forms an antiparallel coiled coil dimer, and it is important for both MST1 autophosphorylation and interactions with other proteins like the Rassf proteins containing also a SARAH domain. Here we show that the monomeric state of SARAH is thermodynamically unstable and that homodimerization is coupled with folding. Moreover, the influence of the inhibitory domain on SARAH stability and affinity is addressed. By investigating the thermal denaturation using differential scanning calorimetry and circular dichroism, we have found that the SARAH domain dissociates and unfolds cooperatively, without a stable intermediate monomeric state. Combining the data with information from isothermal titration calorimetry, a low thermodynamic stability of the monomeric species is obtained. Thus, it is proposed that the transition from MST1 SARAH homodimer to some specific heterodimer implies a non-native monomer intermediate. The inhibitory domain is found to be highly flexible and intrinsically unfolded, not only in isolation but also in the dimeric state of the inhibitory-SARAH construct. The existence of two caspase recognition motifs within the inhibitory domain suggests that its structural flexibility might be important for activation of MST1 during apoptosis. Moreover, the inhibitory domain increases the thermodynamic stability of the SARAH dimer and the homodimer affinity, while having almost no effect on the SARAH domain in the monomeric state. These results emphasize the importance of flexibility and binding-induced folding for specificity, affinity, and the capacity to switch from one state to another.


Asunto(s)
Dimerización , Factor de Crecimiento de Hepatocito/química , Pliegue de Proteína , Proteínas Proto-Oncogénicas/química , Algoritmos , Calorimetría , Rastreo Diferencial de Calorimetría , Caspasas/metabolismo , Dicroismo Circular , Reactivos de Enlaces Cruzados/química , Estabilidad de Enzimas , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Modelos Moleculares , Nefelometría y Turbidimetría , Concentración Osmolar , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA