Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
NMR Biomed ; 36(3): e4858, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36285719

RESUMEN

Acute ischemic stroke results in an ischemic core surrounded by a tissue at risk, named the penumbra, which is potentially salvageable. One way to differentiate the tissues is to measure the hypoxia status. The purpose of the current study is to correlate the abnormal brain tissue volume derived from magnetic resonance-based imaging of brain oxygen saturation (St O2 -MRI) to the fluorine-18 fluoromisonidazole ([18 F]FMISO) positron emission tomography (PET) volume for hypoxia imaging validation, and to analyze the ability of St O2 -MRI to depict the different hypoxic tissue types in the acute phase of stroke. In a pertinent model of stroke in the rat, the volume of tissue with decreased St O2 -MRI signal and that with increased uptake of [18 F]FMISO were equivalent and correlated (r = 0.706; p = 0.015). The values of St O2 in the tissue at risk were significantly greater than those quantified in the core of the lesion, and were less than those for healthy tissue (52.3% ± 2.0%; 43.3% ± 1.9%, and 67.9 ± 1.4%, respectively). A threshold value for St O2 of ≈60% as the cut-off for the identification of the tissue at risk was calculated. Tissue volumes with reduced St O2 -MRI correlated with the final lesion (r = 0.964, p < 0.0001). The findings show that the St O2 -MRI approach is sensitive for the detection of hypoxia and for the prediction of the final lesion after stroke. Once validated in acute clinical settings, this approach might be used to enhance the stratification of patients for potential therapeutic interventions.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Tomografía de Emisión de Positrones , Accidente Cerebrovascular/diagnóstico por imagen , Misonidazol , Hipoxia/diagnóstico por imagen , Imagen por Resonancia Magnética , Radiofármacos
2.
Eur J Nucl Med Mol Imaging ; 49(11): 3750-3760, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35593925

RESUMEN

PURPOSE: We investigated whether artificial intelligence (AI)-based denoising halves PET acquisition time in digital PET/CT. METHODS: One hundred ninety-five patients referred for [18F]FDG PET/CT were prospectively included. Body PET acquisitions were performed in list mode. Original "PET90" (90 s/bed position) was compared to reconstructed ½-duration PET (45 s/bed position) with and without AI-denoising, "PET45AI and PET45". Denoising was performed by SubtlePET™ using deep convolutional neural networks. Visual global image quality (IQ) 3-point scores and lesion detectability were evaluated. Lesion maximal and peak standardized uptake values using lean body mass (SULmax and SULpeak), metabolic volumes (MV), and liver SULmean were measured, including both standard and EARL1 (European Association of Nuclear Medicine Research Ltd) compliant SUL. Lesion-to-liver SUL ratios (LLR) and liver coefficients of variation (CVliv) were calculated. RESULTS: PET45 showed mediocre IQ (scored poor in 8% and moderate in 68%) and lesion concordance rate with PET90 (88.7%). In PET45AI, IQ scores were similar to PET90 (P = 0.80), good in 92% and moderate in 8% for both. The lesion concordance rate between PET90 and PET45AI was 836/856 (97.7%), with 7 lesions (0.8%) only detected in PET90 and 13 (1.5%) exclusively in PET45AI. Lesion EARL1 SULpeak was not significantly different between both PET (P = 0.09). Lesion standard SULpeak, standard and EARL1 SULmax, LLR and CVliv were lower in PET45AI than in PET90 (P < 0.0001), while lesion MV and liver SULmean were higher (P < 0.0001). Good to excellent intraclass correlation coefficients (ICC) between PET90 and PET45AI were observed for lesion SUL and MV (ICC ≥ 0.97) and for liver SULmean (ICC ≥ 0.87). CONCLUSION: AI allows [18F]FDG PET duration in digital PET/CT to be halved, while restoring degraded ½-duration PET image quality. Future multicentric studies, including other PET radiopharmaceuticals, are warranted.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Inteligencia Artificial , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Radiofármacos
3.
Eur J Nucl Med Mol Imaging ; 43(4): 682-94, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26537287

RESUMEN

PURPOSE: The primary objective of this study was to compare the ability of PET and MRI biomarkers to predict treatment efficacy in a preclinical model of recurrent glioblastoma multiforme. METHODS: MRI (anatomical, diffusion, vasculature and oxygenation) and PET ([(18)F]FDG and [(18)F]FLT) parameters were obtained 3 days after the end of treatment and compared with late tumour growth and survival. RESULTS: Early after tumour recurrence, no effect of treatment with temozolomide combined with bevacizumab was observed on tumour volume as assessed by T2-W MRI. At later times, the treatment decreased tumour volume and increased survival. Interestingly, at the earlier time, temozolomide + bevacizumab decreased [(18)F]FLT uptake, cerebral blood volume and oedema. [(18)F]FLT uptake, oedema and cerebral blood volume were correlated with overall survival but [(18)F]FLT uptake had the highest specificity and sensitivity for the early prediction of treatment efficacy. CONCLUSION: The present investigation in a preclinical model of glioblastoma recurrence underscores the importance of multimodal imaging in the assessment of oedema, tumour vascular status and cell proliferation. Finally, [(18)F]FLT holds the greatest promise for the early assessment of treatment efficacy. These findings may translate clinically in that individualized treatment for recurrent glioma could be prescribed for patients selected after PET/MRI examinations.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Animales , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Didesoxinucleósidos , Glioblastoma/diagnóstico , Glioblastoma/tratamiento farmacológico , Humanos , Masculino , Radiofármacos , Ratas
4.
Biol Chem ; 394(4): 529-39, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23399636

RESUMEN

Despite multiple advances in cancer therapies, patients with glioblastoma (GBM) still have a poor prognosis. Numerous glioma models are used not only for the development of innovative therapies but also to optimize conventional ones. Given the significance of hypoxia in drug and radiation resistance and that hypoxia is widely observed among GBM, the establishment of a reliable method to map hypoxia in preclinical human models may contribute to the discovery and translation of future and more targeted therapies. The aim of this study was to compare the hypoxic status of two commonly used human orthotopic glioma models (U87 and U251) developed in rats and studied by noninvasive hypoxia imaging with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol-micro-positron emission tomography ([18F]-FMISO-µPET). In parallel, because of the relationships between angiogenesis and hypoxia, we used magnetic resonance imaging (MRI), histology, and immunohistochemistry to characterize the tumoral vasculature. Although all tumors were detectable in T2-weighted MRI and 2-deoxy-2-[18F]fluoro-d-glucose-µPET, only the U251 model exhibited [18F]-FMISO uptake. Additionally, the U251 tumors were less densely vascularized than U87 tumors. Our study demonstrates the benefits of noninvasive imaging of hypoxia in preclinical models to define the most reliable one for translation of future therapies to clinic based on the importance of intratumoral oxygen tension for the efficacy of chemotherapy and radiotherapy.


Asunto(s)
Glioma/patología , Hipoxia/diagnóstico , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
5.
Med Phys ; 50(6): 3762-3772, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36734667

RESUMEN

BACKGROUND: The improvement of in vitro assessment of targeted alpha therapy (reproducibility, comparability of experiments…) requires precise evaluation of the dose delivered to the cells. To answer this need, a previous study proposed an innovative dosimetry method based on α-spectroscopy and a specific deconvolution process to recover the spatial distribution of 212 Pb isotopes inside in vitro culture wells. Nevertheless, although promising, the deconvolution method was time consuming and only tested for a simple isotope decay chain. PURPOSE: The purpose of this work is to propose a new matrix deconvolution method of α spectra based on a constrained-non-negative-maximum-likelihood decomposition, both faster and offering a greater modelling flexibility, allowing to study independently the kinetics of each of the daughter nuclides of complex decay chains (illustrated here with 223 Ra) in in vitro culture wells. METHODS: Firstly, the performance of the new method was fully evaluated through Monte Carlo simulations of in vitro irradiations. Different spatial distributions of 212 Pb and 223 Ra, the corresponding α spectra measured by a silicon detector and the doses delivered to the cells were simulated with Geant4. The deconvolution results were then compared to the simulation results. Secondly, measurements were carried out in culture wells without cells containing 15 kBq of 212 Pb or 9.3 kBq of 223 Ra, placed above silicon detectors recording α spectra in real time. The matrix deconvolution was then applied to determine the spatial and temporal distribution of all α-emitting daughters of studied isotopes. RESULTS: The matrix deconvolution was proved to recover the simulated distribution gradients, ensuring simulated doses within 3 % for both tested radionuclides, with errors on dose normally distributed around the reference value (consequently not exhibiting any bias), even in the case of complex decay chains as 223 Ra. The experimental study of 212 Pb and 223 Ra showed highly inhomogeneous distributions and time evolution of the concentration gradients, consistent with the previous study. Furthermore, it highlighted the complex kinetics of 223 Ra with different distributions of its α-emitting daughters (219 Rn, 215 Po, 215 At, 211 Bi, 211 Po). CONCLUSIONS: This study validates a new deconvolution method, fast and flexible, that proved to be accurate and reliable. This method allowed to reveal the complexity of isotopes kinetics in in vitro experiments, especially with complex decay chains. Experimental dosimetry, necessary to improve reliability of in vitro studies in targeted alpha therapy, is demonstrated to be feasible with the proposed method.


Asunto(s)
Plomo , Silicio , Reproducibilidad de los Resultados , Radiometría/métodos , Isótopos , Método de Montecarlo
6.
Diagnostics (Basel) ; 13(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175017

RESUMEN

Given the constant pressure to increase patient throughput while respecting radiation protection, global body PET image quality (IQ) is not satisfactory in all patients. We first studied the association between IQ and other variables, in particular body habitus, on a digital PET/CT. Second, to improve and homogenize IQ, we evaluated a deep learning PET denoising solution (Subtle PETTM) using convolutional neural networks. We analysed retrospectively in 113 patients visual IQ (by a 5-point Likert score in two readers) and semi-quantitative IQ (by the coefficient of variation in the liver, CVliv) as well as lesion detection and quantification in native and denoised PET. In native PET, visual and semi-quantitative IQ were lower in patients with larger body habitus (p < 0.0001 for both) and in men vs. women (p ≤ 0.03 for CVliv). After PET denoising, visual IQ scores increased and became more homogeneous between patients (4.8 ± 0.3 in denoised vs. 3.6 ± 0.6 in native PET; p < 0.0001). CVliv were lower in denoised PET than in native PET, 6.9 ± 0.9% vs. 12.2 ± 1.6%; p < 0.0001. The slope calculated by linear regression of CVliv according to weight was significantly lower in denoised than in native PET (p = 0.0002), demonstrating more uniform CVliv. Lesion concordance rate between both PET series was 369/371 (99.5%), with two lesions exclusively detected in native PET. SUVmax and SUVpeak of up to the five most intense native PET lesions per patient were lower in denoised PET (p < 0.001), with an average relative bias of -7.7% and -2.8%, respectively. DL-based PET denoising by Subtle PETTM allowed [18F]FDG PET global image quality to be improved and homogenized, while maintaining satisfactory lesion detection and quantification. DL-based denoising may render body habitus adaptive PET protocols unnecessary, and pave the way for the improvement and homogenization of PET modalities.

7.
Diagnostics (Basel) ; 13(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36900087

RESUMEN

BACKGROUND: Arc therapy allows for better dose deposition conformation, but the radiotherapy plans (RT plans) are more complex, requiring patient-specific pre-treatment quality assurance (QA). In turn, pre-treatment QA adds to the workload. The objective of this study was to develop a predictive model of Delta4-QA results based on RT-plan complexity indices to reduce QA workload. METHODS: Six complexity indices were extracted from 1632 RT VMAT plans. A machine learning (ML) model was developed for classification purpose (two classes: compliance with the QA plan or not). For more complex locations (breast, pelvis and head and neck), innovative deep hybrid learning (DHL) was trained to achieve better performance. RESULTS: For not complex RT plans (with brain and thorax tumor locations), the ML model achieved 100% specificity and 98.9% sensitivity. However, for more complex RT plans, specificity falls to 87%. For these complex RT plans, an innovative QA classification method using DHL was developed and achieved a sensitivity of 100% and a specificity of 97.72%. CONCLUSIONS: The ML and DHL models predicted QA results with a high degree of accuracy. Our predictive QA online platform is offering substantial time savings in terms of accelerator occupancy and working time.

8.
EJNMMI Res ; 13(1): 102, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006431

RESUMEN

BACKGROUND: Brain metastases (BM) are the most frequent malignant brain tumors. The aim of this study was to characterize the tumor microenvironment (TME) of BM and particularly hypoxia and redox state, known to play a role in tumor growth and treatment resistance with multimodal PET and MRI imaging, immunohistochemical and proteomic approaches in a human lung cancer (H2030-BrM3)-derived BM model in rats. RESULTS: First, in vitro studies confirmed that H2030-BrM3 cells respond to hypoxia with increasing expression of HIF-1, HIF-2 and their target genes. Proteomic analyses revealed, among expression changes, proteins associated with metabolism, oxidative stress, metal response and hypoxia signaling in particular in cortical BM. [64Cu][Cu(ATSM)] PET revealed a significant uptake by cortical BM (p < 0.01), while no uptake is observed in striatal BM 23 days after tumor implantation. Pimonidazole, HIF-1α, HIF-2α, CA-IX as well as GFAP, CTR1 and DMT1 immunostainings are positive in both BM. CONCLUSION: Overall, [64Cu][Cu(ATSM)] imaging and proteomic results showed the presence of hypoxia and protein expression changes linked to hypoxia and oxidative stress in BM, which are more pronounced in cortical BM compared to striatal BM. Moreover, it emphasized the interest of [64Cu][Cu(ATSM)] PET to characterize TME of BM and depict inter-metastasis heterogeneity that could be useful to guide treatments.

9.
Front Oncol ; 11: 692973, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504782

RESUMEN

BACKGROUND: With a constantly increasing number of diagnostic images performed each year, Artificial Intelligence (AI) denoising methods offer an opportunity to respond to the growing demand. However, it may affect information in the image in an unknown manner. This study quantifies the effect of AI-based denoising on FDG PET textural information in comparison to a convolution with a standard gaussian postfilter (EARL1). METHODS: The study was carried out on 113 patients who underwent a digital FDG PET/CT (VEREOS, Philips Healthcare). 101 FDG avid lesions were segmented semi-automatically by a nuclear medicine physician. VOIs in the liver and lung as reference organs were contoured. PET textural features were extracted with pyradiomics. Texture features from AI denoised and EARL1 versus original PET images were compared with a Concordance Correlation Coefficient (CCC). Features with CCC values ≥ 0.85 threshold were considered concordant. Scatter plots of variable pairs with R2 coefficients of the more relevant features were computed. A Wilcoxon signed rank test to compare the absolute values between AI denoised and original images was performed. RESULTS: The ratio of concordant features was 90/104 (86.5%) in AI denoised versus 46/104 (44.2%) with EARL1 denoising. In the reference organs, the concordant ratio for AI and EARL1 denoised images was low, respectively 12/104 (11.5%) and 7/104 (6.7%) in the liver, 26/104 (25%) and 24/104 (23.1%) in the lung. SUVpeak was stable after the application of both algorithms in comparison to SUVmax. Scatter plots of variable pairs showed that AI filtering affected more lower versus high intensity regions unlike EARL1 gaussian post filters, affecting both in a similar way. In lesions, the majority of texture features 79/100 (79%) were significantly (p<0.05) different between AI denoised and original PET images. CONCLUSIONS: Applying an AI-based denoising on FDG PET images maintains most of the lesion's texture information in contrast to EARL1-compatible Gaussian filter. Predictive features of a trained model could be thus the same, however with an adapted threshold. Artificial intelligence based denoising in PET is a very promising approach as it adapts the denoising in function of the tissue type, preserving information where it should.

10.
Cancers (Basel) ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35008198

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) is predominant in the therapeutic management of cancer patients, unfortunately, patients have to wait a long time to get an appointment for examination. Therefore, new MRI devices include deep-learning (DL) solutions to save acquisition time. However, the impact of these algorithms on intensity and texture parameters has been poorly studied. The aim of this study was to evaluate the impact of resampling and denoising DL models on radiomics. METHODS: Resampling and denoising DL model was developed on 14,243 T1 brain images from 1.5T-MRI. Radiomics were extracted from 40 brain metastases from 11 patients (2049 images). A total of 104 texture features of DL images were compared to original images with paired t-test, Pearson correlation and concordance-correlation-coefficient (CCC). RESULTS: When two times shorter image acquisition shows strong disparities with the originals concerning the radiomics, with significant differences and loss of correlation of 79.81% and 48.08%, respectively. Interestingly, DL models restore textures with 46.15% of unstable parameters and 25.96% of low CCC and without difference for the first-order intensity parameters. CONCLUSIONS: Resampling and denoising DL models reconstruct low resolution and noised MRI images acquired quickly into high quality images. While fast MRI acquisition loses most of the radiomic features, DL models restore these parameters.

11.
Front Oncol ; 11: 714514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504791

RESUMEN

Brain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue. New targeted therapies, for an earlier and/or more specific treatment of the tumor and its microenvironment, are needed. Radioimmunotherapy (RIT), a combination of a radionuclide to a specific antibody, appears to be a promising tool. Inflammation, which is involved in multiple steps, including the early phase, of BM development is attractive as a relevant target for RIT. This review will focus on the (1) early biomarkers of inflammation in BM pertinent for RIT, (2) state of the art studies on RIT for BM, and (3) the importance of dosimetry to RIT in BM. These two last points will be addressed in comparison to the conventional EBRT treatment, particularly with respect to the balance between tumor control and healthy tissue complications. Finally, because new diagnostic imaging techniques show a potential for the detection of BM at an early stage of the disease, we focus particularly on this therapeutic window.

12.
Sci Rep ; 11(1): 11239, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045576

RESUMEN

Lung cancer patients frequently develop brain metastases (BM). Despite aggressive treatment including neurosurgery and external-radiotherapy, overall survival remains poor. There is a pressing need to further characterize factors in the microenvironment of BM that may confer resistance to radiotherapy (RT), such as hypoxia. Here, hypoxia was first evaluated in 28 biopsies from patients with non­small cell lung cancer (NSCLC) BM, using CA-IX immunostaining. Hypoxia characterization (pimonidazole, CA-IX and HIF-1α) was also performed in different preclinical NSCLC BM models induced either by intracerebral injection of tumor cells (H2030-Br3M, H1915) into the cortex and striatum, or intracardial injection of tumor cells (H2030-Br3M). Additionally, [18F]-FMISO-PET and oxygen-saturation-mapping-MRI (SatO2-MRI) were carried out in the intracerebral BM models to further characterize tumor hypoxia and evaluate the potential of Hypoxia-image-guided-RT (HIGRT). The effect of RT on proliferation of BM ([18F]-FLT-PET), tumor volume and overall survival was determined. We showed that hypoxia is a major yet heterogeneous feature of BM from lung cancer both preclinically and clinically. HIGRT, based on hypoxia heterogeneity observed between cortical and striatal metastases in the intracerebrally induced models, showed significant potential for tumor control and animal survival. These results collectively highlight hypoxia as a hallmark of BM from lung cancer and the value of HIGRT in better controlling tumor growth.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Radioterapia Guiada por Imagen , Hipoxia Tumoral , Anciano , Animales , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/secundario , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Imagen por Resonancia Magnética , Persona de Mediana Edad , Ratas , Sistema de Registros
13.
Biomaterials ; 257: 120249, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32739663

RESUMEN

Approaches able to counteract, at least temporarily, hypoxia, a well-known factor of resistance to treatment in solid tumors are highly desirable. Herein, we report the use of nanosized zeolite crystals as hyperoxic/hypercapnic gas carriers for glioblastoma. First, the non-toxic profile of nanosized zeolite crystals in living animals (mice, rats and non-human primates) and in various cell types is presented. Second, the ability of the nanosized zeolites to act as a vasoactive agent for a targeted re-oxygenation of the tumor after intravenous injection is shown. As attested by an MRI protocol, the zeolites were able to increase oxygenation and blood volume specifically within the brain tumor whilst no changes in the healthy-non tumoral brain-were observed. The first proof of concept for the use of metal-containing nanosized zeolites as a tool for vectorization of hyperoxic/hypercapnic gases in glioblastoma is revealed.


Asunto(s)
Glioblastoma , Zeolitas , Animales , Gases , Imagen por Resonancia Magnética , Ratones , Ratas
14.
Neuro Oncol ; 22(3): 357-368, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31538194

RESUMEN

BACKGROUND: Brain metastases (BM) develop frequently in patients with breast cancer. Despite the use of external beam radiotherapy (EBRT), the average overall survival is short (6 months from diagnosis). The therapeutic challenge is to deliver molecularly targeted therapy at an early stage when relatively few metastatic tumor cells have invaded the brain. Vascular cell adhesion molecule 1 (VCAM-1), overexpressed by nearby endothelial cells during the early stages of BM development, is a promising target. The aim of this study was to investigate the therapeutic value of targeted alpha-particle radiotherapy, combining lead-212 (212Pb) with an anti-VCAM-1 antibody (212Pb-αVCAM-1). METHODS: Human breast carcinoma cells that metastasize to the brain, MDA-231-Br-GFP, were injected into the left cardiac ventricle of nude mice. Twenty-one days after injection, 212Pb-αVCAM-1 uptake in early BM was determined in a biodistribution study and systemic/brain toxicity was evaluated. Therapeutic efficacy was assessed using MR imaging and histology. Overall survival after 212Pb-αVCAM-1 treatment was compared with that observed after standard EBRT. RESULTS: 212Pb-αVCAM-1 was taken up into early BM with a tumor/healthy brain dose deposition ratio of 6 (5.52e108 and 0.92e108) disintegrations per gram of BM and healthy tissue, respectively. MRI analyses showed a statistically significant reduction in metastatic burden after 212Pb-αVCAM-1 treatment compared with EBRT (P < 0.001), translating to an increase in overall survival of 29% at 40 days post prescription (P < 0.01). No major toxicity was observed. CONCLUSIONS: The present investigation demonstrates that 212Pb-αVCAM-1 specifically accumulates at sites of early BM causing tumor growth inhibition.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Radioterapia/métodos , Molécula 1 de Adhesión Celular Vascular/inmunología , Partículas alfa , Animales , Anticuerpos/administración & dosificación , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Femenino , Humanos , Radioisótopos de Plomo/administración & dosificación , Ratones , Ratones Desnudos
15.
Med Phys ; 47(3): 1317-1326, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31838744

RESUMEN

PURPOSE: Targeted alpha therapy (TAT) takes advantage of the short-range and high-linear energy transfer of α-particles and is increasingly used, especially for the treatment of metastatic lesions. Nevertheless, dosimetry of α-emitters is challenging for the very same reasons, even for in vitro experiments. Assumptions, such as the uniformity of the distribution of radionuclides in the culture medium, are commonly made, which could have a profound impact on dose calculations. In this study we measured the spatial distribution of α-emitting 212 Pb coupled to an anti-VCAM-1 antibody (212 Pb-αVCAM-1) and its evolution over time in the context of in vitro irradiations. METHODS: Two experimental setups were implemented without cells to measure α-particle count rates and energy spectra in culture medium containing 15 kBq of 212 Pb-α-VCAM-1. Silicon detectors were placed above and below cell culture dishes for 20 h. One of the dishes had a 2.5-µm-thick mylar-base allowing easy detection of the α-particles. Monte Carlo simulations were performed to analyze experimental spectra. Experimental setups were modeled and α-energy spectra were simulated in the silicon detectors for different decay positions in the culture medium. Simulated spectra were then used to deconvolute experimental spectra to determine the spatial distribution of 212 Pb-αVCAM-1 in the medium. This distribution was finally used to calculate the dose deposition in cell culture experiments. RESULTS: Experimental count rates and energy spectra showed differences in measurements taken at the top and the bottom of dishes and temporal variations that did not follow 212 Pb decay. The radionuclide spatial distribution was shown to be composed of a uniform distribution and concentration gradients at the top and the bottom, which were subjected to temporal variations that may be explained by gravity and electrostatic attraction. The absorbed dose in cells calculated from this distribution was compared with the dose expected for a uniform and static distribution and found to be 1.75 times higher, which is highly significant to interpret biological observations. CONCLUSIONS: This study demonstrated that accurate dosimetry of α-emitters requires the experimental determination of radionuclide spatial and temporal distribution and highlighted that in vitro assessment of dose for TAT cannot only rely on a uniform distribution of activity in the culture medium. The reliability and reproducibility of future experiments should benefit from specifically developed dosimetry tools and methods.


Asunto(s)
Partículas alfa/uso terapéutico , Inmunoconjugados/uso terapéutico , Radioisótopos de Plomo/uso terapéutico , Dosis de Radiación , Molécula 1 de Adhesión Celular Vascular/inmunología , Inmunoconjugados/inmunología , Método de Montecarlo , Dosificación Radioterapéutica
16.
Front Med (Lausanne) ; 6: 117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249831

RESUMEN

Severe hypoxia [oxygen partial pressure (pO2) below 5-10 mmHg] is more frequent in glioblastoma multiforme (GBM) compared to lower-grade gliomas. Seminal studies in the 1950s demonstrated that hypoxia was associated with increased resistance to low-linear energy transfer (LET) ionizing radiation. In experimental conditions, the total radiation dose has to be multiplied by a factor of 3 to achieve the same cell lethality in anoxic situations. The presence of hypoxia in human tumors is assumed to contribute to treatment failures after radiotherapy (RT) in cancer patients. Therefore, a logical way to overcome hypoxia-induced radioresistance would be to deliver substantially higher doses of RT in hypoxic volumes delineated on pre-treatment imaging as biological target volumes (BTVs). Such an approach faces various fundamental, technical, and clinical challenges. The present review addresses several technical points related to the delineation of hypoxic zones, which include: spatial accuracy, quantitative vs. relative threshold, variations of hypoxia levels during RT, and availability of hypoxia tracers. The feasibility of hypoxia imaging as an assessment tool for early tumor response to RT and for predicting long-term outcomes is discussed. Hypoxia imaging for RT dose painting is likewise examined. As for the radiation oncologist's point of view, hypoxia maps should be converted into dose-distribution objectives for RT planning. Taking into account the physics and the radiobiology of various irradiation beams, preliminary in silico studies are required to investigate the feasibility of dose escalation in terms of normal tissue tolerance before clinical trials are undertaken.

17.
Theranostics ; 8(1): 292-303, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29290808

RESUMEN

Brain metastases develop frequently in patients with breast cancer, and present a pressing therapeutic challenge. Expression of vascular cell adhesion molecule 1 (VCAM-1) is upregulated on brain endothelial cells during the early stages of metastasis and provides a target for the detection and treatment of early brain metastases. The aim of this study was to use a model of early brain metastasis to evaluate the efficacy of α-emitting radionuclides, 149Tb, 211At, 212Pb, 213Bi and 225Ac; ß-emitting radionuclides, 90Y, 161Tb and 177Lu; and Auger electron (AE)-emitters 67Ga, 89Zr, 111In and 124I, for targeted radionuclide therapy (TRT). METHODS: Histologic sections and two photon microscopy of mouse brain parenchyma were used to inform a cylindrical vessel geometry using the Geant4 general purpose Monte Carlo (MC) toolkit with the Geant4-DNA low energy physics models. Energy deposition was evaluated as a radial function and the resulting phase spaces were superimposed on a DNA model to estimate double-strand break (DSB) yields for representative ß- and α-emitters, 177Lu and 212Pb. Relative biological effectiveness (RBE) values were determined by only evaluating DNA damage due to physical interactions. RESULTS: 177Lu produced 2.69 ± 0.08 DSB per GbpGy, without significant variation from the lumen of the vessel to a radius of 100 µm. The DSB yield of 212Pb included two local maxima produced by the 6.1 MeV and 8.8 MeV α-emissions from decay products, 212Bi and 212Po, with yields of 7.64 ± 0.12 and 9.15 ± 0.24 per GbpGy, respectively. Given its higher DSB yield 212Pb may be more effective for short range targeting of early micrometastatic lesions than 177Lu. CONCLUSION: MC simulation of a model of early brain metastases provides invaluable insight into the potential efficacy of α-, ß- and AE-emitting radionuclides for TRT. 212Pb, which has the attributes of a theranostic radionuclide since it can be used for SPECT imaging, showed a favorable dose profile and RBE.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/radioterapia , Radioisótopos/uso terapéutico , Molécula 1 de Adhesión Celular Vascular/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Humanos , Método de Montecarlo , Proteína Tumoral Controlada Traslacionalmente 1
18.
J Cereb Blood Flow Metab ; 37(7): 2584-2597, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27702880

RESUMEN

The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (StO2-MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of StO2-MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, StO2-MRI and [18F]-FMISO PET were performed sequentially. Under hypoxemia conditions, StO2-MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [18F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, StO2-MRI was able to detect hypoxia in the hypoxic models, mimicking [18F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, StO2-MRI could be a robust and specific imaging biomarker to assess hypoxia.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Glioma/diagnóstico por imagen , Hipoxia Encefálica/diagnóstico por imagen , Oxígeno/sangre , Animales , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Circulación Cerebrovascular/fisiología , Glioma/metabolismo , Glioma/patología , Hipoxia Encefálica/metabolismo , Imagen por Resonancia Magnética , Masculino , Trasplante de Neoplasias , Tomografía de Emisión de Positrones , Ratas Endogámicas F344 , Ratas Desnudas , Ratas Wistar
19.
Radiother Oncol ; 124(3): 488-495, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28595752

RESUMEN

PURPOSE: To assess the efficacy of different schedules for combining external beam radiotherapy (EBRT) with molecular radiotherapy (MRT) using 131I-mIBG in the management of neuroblastoma. MATERIALS AND METHODS: BALB/c nu/nu mice bearing SK-N-SH neuroblastoma xenografts were assigned to five treatment groups: 131I-mIBG 24h after EBRT, EBRT 6days after 131I-mIBG, EBRT alone, 131I-mIBG alone and control (untreated). A total of 56 mice were assigned to 3 studies. Study 1: Vessel permeability was evaluated using dynamic contrast-enhanced (DCE)-MRI (n=3). Study 2: Tumour uptake of 131I-mIBG in excised lesions was evaluated by γ-counting and autoradiography (n=28). Study 3: Tumour volume was assessed by longitudinal MR imaging and survival was analysed (n=25). Tumour dosimetry was performed using Monte Carlo simulations of absorbed fractions with the radiation transport code PENELOPE. RESULTS: Given alone, both 131I-mIBG and EBRT resulted in a seven-day delay in tumour regrowth. Following EBRT, vessel permeability was evaluated by DCE-MRI and showed an increase at 24h post irradiation that correlated with an increase in 131I-mIBG tumour uptake, absorbed dose and overall survival in the case of combined treatment. Similarly, EBRT administered seven days after MRT to coincide with tumour regrowth, significantly decreased the tumour volume and increased overall survival. CONCLUSIONS: This study demonstrates that combining EBRT and MRT has an enhanced therapeutic effect and emphasizes the importance of treatment scheduling according to pathophysiological criteria such as tumour vessel permeability and tumour growth kinetics.


Asunto(s)
3-Yodobencilguanidina/uso terapéutico , Neuroblastoma/radioterapia , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/mortalidad , Neuroblastoma/patología , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Br J Radiol ; 90(1069): 20160427, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27524406

RESUMEN

OBJECTIVE: Neuroblastoma has one of the lowest survival rates of all childhood cancers, despite the use of intensive treatment regimens. Preclinical models of neuroblastoma are essential for testing new multimodality protocols, including those that involve radiotherapy (RT). The aim of this study was to develop a robust method for RT planning and tumour response monitoring based on combined MRI and cone-beam CT (CBCT) imaging and to apply it to a widely studied mouse xenograft model of neuroblastoma, SK-N-SH. METHODS: As part of a tumour growth inhibition study, SK-N-SH xenografts were generated in BALB/c nu/nu mice. Mice (n = 8) were placed in a printed MR- and CT-compatible plastic cradle, imaged using a 4.7-T MRI scanner and then transferred to a small animal radiation research platform (SARRP) irradiator with on-board CBCT. MRI/CBCT co-registration was performed to enable RT planning using the soft-tissue contrast afforded by MRI prior to delivery of RT (5 Gy). Tumour response was assessed by serial MRI and calliper measurements. RESULTS: SK-N-SH xenografts formed soft, deformable tumours that could not be differentiated from surrounding normal tissues using CBCT. MR images, which allowed clear delineation of tumours, were successfully co-registered with CBCT images, allowing conformal RT to be delivered. MRI measurements of tumour volume 4 days after RT correlated strongly with length of survival time. CONCLUSION: MRI allowed precision RT of SK-N-SH tumours and provided an accurate means of measuring tumour response. Advances in knowledge: MRI-based RT planning of murine tumours is feasible using an SARRP irradiator.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Neuroblastoma/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Diagnóstico Precoz , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Neuroblastoma/diagnóstico , Valor Predictivo de las Pruebas , Dosificación Radioterapéutica , Medición de Riesgo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA