Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2214853120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155874

RESUMEN

Gastric cancer is a dominating cause of cancer-associated mortality with limited therapeutic options. Here, we show that syndecan-4 (SDC4), a transmembrane proteoglycan, is highly expressed in intestinal subtype gastric tumors and that this signature associates with patient poor survival. Further, we mechanistically demonstrate that SDC4 is a master regulator of gastric cancer cell motility and invasion. We also find that SDC4 decorated with heparan sulfate is efficiently sorted in extracellular vesicles (EVs). Interestingly, SDC4 in EVs regulates gastric cancer cell-derived EV organ distribution, uptake, and functional effects in recipient cells. Specifically, we show that SDC4 knockout disrupts the tropism of EVs for the common gastric cancer metastatic sites. Our findings set the basis for the molecular implications of SDC4 expression in gastric cancer cells and provide broader perspectives on the development of therapeutic strategies targeting the glycan-EV axis to limit tumor progression.


Asunto(s)
Neoplasias Gástricas , Sindecano-4 , Humanos , Heparitina Sulfato/metabolismo , Invasividad Neoplásica , Neoplasias Gástricas/genética , Sindecano-4/genética , Sindecano-4/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(36): e2206327119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037380

RESUMEN

Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnß1 transcription in the brain of mice infected with Plasmodium berghei ANKA (Pba). This STING1/IFNß-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood-brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN-driven brain inflammation was demonstrated in brain endothelial-specific IFNß-reporter and STING1-deficient Pba-infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba-infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNß in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNß/CXCL10 axis crucial to CM pathogenesis and lethality.


Asunto(s)
Encéfalo , Hemo , Interferón beta , Malaria Cerebral , Proteínas de la Membrana , Animales , Encéfalo/parasitología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/parasitología , Endotelio/inmunología , Endotelio/parasitología , Hemo/metabolismo , Interferón beta/inmunología , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Plasmodium berghei/metabolismo , Activación Transcripcional/inmunología
3.
BMC Cancer ; 24(1): 709, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853244

RESUMEN

BACKGROUND: Pancreatic cancer, predominantly characterized by ductal adenocarcinoma (PDAC) accounts for 90% of cases and is the fourth leading cause of cancer-related deaths globally. Its incidence is notably increasing. This poor prognosis is primarily due to late-stage diagnosis (approximately 70% to 80% of patients are diagnosed at an advanced stage), aggressive tumor biology, and low sensitivity to chemotherapy. Consequently, it is crucial to identify and develop a simple, feasible and reproducible blood-based signature (i.e., combination of biomarkers) for early detection of PDAC. METHODS: The PANLIPSY study is a multi-center, non-interventional prospective clinical trial designed to achieve early detection of PDAC with high specificity and sensitivity, using a combinatorial approach in blood samples. These samples are collected from patients with resectable, borderline or locally advanced, and metastatic stage PDAC within the framework of the French Biological and Clinical Database for PDAC cohort (BACAP 2). All partners of the BACAP consortium are eligible to participate. The study will include 215 PDAC patients, plus 25 patients with benign pancreatic conditions from the PAncreatic Disease Cohort of TOuLouse (PACTOL) cohort, and 115 healthy controls, totaling 355 individuals. Circulating biomarkers will be collected in a total volume of 50 mL of blood, divided into one CellSave tube (10 mL), two CELL-FREE DNA BCT® preservative tubes (18 mL), and five EDTA tubes (22 mL in total). Samples preparation will adhere to the guidelines of the European Liquid Biopsy Society (ELBS). A unique feature of the study is the AI-based comparison of these complementary liquid biopsy biomarkers. Main end-points: i) to define a liquid biopsy signature that includes the most relevant circulating biomarkers, ii) to validate the multi-marker panel in an independent cohort of healthy controls and patients, with resectable PDAC, and iii) to establish a unique liquid biopsy biobank for PDAC study. DISCUSSION: The PANLIPSY study is a unique prospective non-interventional clinical trial that brings together liquid biopsy experts. The aim is to develop a biological signature for the early detection of PDAC based on AI-assisted detection of circulating biomarkers in blood samples (CTCs, ctDNA, EVs, circulating immune system, circulating cell-free nucleosomes, proteins, and microbiota). TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06128343 / NCT05824403. Registration dates: June 8,2023 and April 21, 2023.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Detección Precoz del Cáncer , Neoplasias Pancreáticas , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Detección Precoz del Cáncer/métodos , Francia , Biopsia Líquida/métodos , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , Estudios Prospectivos
4.
Cell Commun Signal ; 21(1): 35, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782237

RESUMEN

BACKGROUND: Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, exhibit great potential for the diagnosis and treatment of brain disorders, representing a valuable tool for precision medicine. The latter demands high-quality human biospecimens, especially in complex disorders in which pathological and specimen heterogeneity, as well as diverse individual clinical profile, often complicate the development of precision therapeutic schemes and patient-tailored treatments. Thus, the collection and characterization of physiologically relevant sEVs are of the utmost importance. However, standard brain EV isolation approaches rely on tissue dissociation, which can contaminate EV fractions with intracellular vesicles. METHODS: Based on multiscale analytical platforms such as cryo-EM, label-free proteomics, advanced flow cytometry, and ExoView analyses, we compared and characterized the EV fraction isolated with this novel method with a classical digestion-based EV isolation procedure. Moreover, EV biogenesis was pharmacologically manipulated with either GW4869 or picrotoxin to assess the validity of the spontaneous-release method, while the injection of labelled-EVs into the mouse brain further supported the integrity of the isolated vesicles. RESULTS: We hereby present an efficient purification method that captures a sEV-enriched population spontaneously released by mouse and human brain tissue. In addition, we tested the significance of the release method under conditions where biogenesis/secretion of sEVs was pharmacologically manipulated, as well as under animals' exposure to chronic stress, a clinically relevant precipitant of brain pathologies, such as depression and Alzheimer's disease. Our findings show that the released method monitors the drug-evoked inhibition or enhancement of sEVs secretion while chronic stress induces the secretion of brain exosomes accompanied by memory loss and mood deficits suggesting a potential role of sEVs in the brain response to stress and related stress-driven brain pathology. CONCLUSIONS: Overall, the spontaneous release method of sEV yield may contribute to the characterization and biomarker profile of physiologically relevant brain-derived sEVs in brain function and pathology. Video Abstract.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Vesículas Extracelulares , Humanos , Animales , Ratones , Encéfalo , Biomarcadores
5.
J Proteome Res ; 21(4): 910-920, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35263542

RESUMEN

Extracellular vesicles (EVs) mediate communication in physiological and pathological conditions. In the pathogenesis of type 2 diabetes, inter-organ communication plays an important role in its progress and metabolic surgery leads to its remission. Moreover, gut dysbiosis is emerging as a diabetogenic factor. However, it remains unclear how the gut senses metabolic alterations and whether this is transmitted to other tissues via EVs. Using a diet-induced prediabetic mouse model, we observed that protein packaging in gut-derived EVs (GDE), specifically the small intestine, is altered in prediabetes. Proteins related to lipid metabolism and to oxidative stress management were more abundant in prediabetic GDE compared to healthy controls. On the other hand, proteins related to glycolytic activity, as well as those responsible for the degradation of polyubiquitinated composites, were depleted in prediabetic GDE. Together, our findings show that protein packaging in GDE is markedly modified during prediabetes pathogenesis, thus suggesting that prediabetic alterations in the small intestine are translated into modified GDE proteomes, which are dispersed into the circulation where they can interact with and influence the metabolic status of other tissues. This study highlights the importance of the small intestine as a tissue that propagates prediabetic metabolic dysfunction throughout the body and the importance of GDE as the messengers. Data are available via ProteomeXchange with identifier PXD028338.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Estado Prediabético , Animales , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Intestino Delgado/metabolismo , Ratones , Estado Prediabético/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362114

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is an aggressive B cell lymphoma characterized by a heterogeneous behavior and in need of more accurate biological characterization monitoring and prognostic tools. Extracellular vesicles are secreted by all cell types and are currently established to some extent as representatives of the cell of origin. The present study characterized and evaluated the diagnostic and prognostic potential of plasma extracellular vesicles (EVs) proteome in DLBCL by using state-of-the-art mass spectrometry. The EV proteome is strongly affected by DLBCL status, with multiple proteins uniquely identified in the plasma of DLBCL. A proof-of-concept classifier resulted in highly accurate classification with a sensitivity and specificity of 1 when tested on the holdout test data set. On the other hand, no proteins were identified to correlate with non-germinal center B-cell like (non-GCB) or GCB subtypes to a significant degree after correction for multiple testing. However, functional analysis suggested that antigen binding is regulated when comparing non-GCB and GCB. Survival analysis based on protein quantitative values and clinical parameters identified multiple EV proteins as significantly correlated to survival. In conclusion, the plasma extracellular vesicle proteome identifies DLBCL cancer patients from healthy donors and contains potential EV protein markers for prediction of survival.


Asunto(s)
Vesículas Extracelulares , Linfoma de Células B Grandes Difuso , Humanos , Proteoma , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/patología , Vesículas Extracelulares/patología
7.
Nature ; 527(7578): 329-35, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26524530

RESUMEN

Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6ß4 and α6ß1 were associated with lung metastasis, while exosomal integrin αvß5 was linked to liver metastasis. Targeting the integrins α6ß4 and αvß5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.


Asunto(s)
Encéfalo/metabolismo , Exosomas/metabolismo , Integrinas/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Tropismo , Animales , Biomarcadores/metabolismo , Encéfalo/citología , Línea Celular Tumoral , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Genes src , Humanos , Integrina alfa6beta1/metabolismo , Integrina alfa6beta4/antagonistas & inhibidores , Integrina alfa6beta4/metabolismo , Cadenas beta de Integrinas/metabolismo , Integrina beta4/metabolismo , Integrinas/antagonistas & inhibidores , Macrófagos del Hígado/citología , Macrófagos del Hígado/metabolismo , Hígado/citología , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Fosforilación , Receptores de Vitronectina/antagonistas & inhibidores , Receptores de Vitronectina/metabolismo , Proteínas S100/genética
8.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502169

RESUMEN

Cutaneous melanoma (CM) is the deadliest skin cancer, whose molecular pathways underlying its malignancy remain unclear. Therefore, new information to guide evidence-based clinical decisions is required. Adenosine diphosphate (ADP)-ribosylation factor-like (ARL) proteins are membrane trafficking regulators whose biological relevance in CM is undetermined. Here, we investigated ARL expression and its impact on CM prognosis and immune microenvironment through integrated bioinformatics analysis. Our study found that all 22 ARLs are differentially expressed in CM. Specifically, ARL1 and ARL11 are upregulated and ARL15 is downregulated regardless of mutational frequency or copy number variations. According to TCGA data, ARL1 and ARL15 represent independent prognostic factors in CM as well as ARL11 based on GEPIA and OncoLnc. To investigate the mechanisms by which ARL1 and ARL11 increase patient survival while ARL15 reduces it, we evaluated their correlation with the immune microenvironment. CD4+ T cells and neutrophil infiltrates are significantly increased by ARL1 expression. Furthermore, ARL11 expression was correlated with 17 out of 21 immune infiltrates, including CD8+ T cells and M2 macrophages, described as having anti-tumoral activity. Likewise, ARL11 is interconnected with ZAP70, ADAM17, and P2RX7, which are implicated in immune cell activation. Collectively, this study provides the first evidence that ARL1, ARL11, and ARL15 may influence CM progression, prognosis, and immune microenvironment remodeling.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Biología Computacional , Susceptibilidad a Enfermedades , Melanoma/etiología , Melanoma/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo , Animales , Biomarcadores de Tumor , Comunicación Celular , Biología Computacional/métodos , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Melanoma/diagnóstico , Melanoma/mortalidad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Regiones Promotoras Genéticas , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/mortalidad , Vesículas Transportadoras , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Flujo de Trabajo , Melanoma Cutáneo Maligno
9.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069135

RESUMEN

Triple negative breast cancer presents higher mortality and poorer survival rates than other breast cancer (BC) types, due to the proneness to brain metastases formation, which are usually diagnosed at advanced stages. Therefore, the discovery of BC brain metastases (BCBM) biomarkers appears pivotal for a timely intervention. With this work, we aimed to disclose microRNAs (miRNAs) and extracellular vesicles (EVs) in the circulation as biomarkers of BCBM formation. Using a BCBM animal model, we analyzed EVs in plasma by nanoparticle tracking analysis and ascertained their blood-brain barrier (BBB) origin by flow cytometry. We further evaluated circulating miRNAs by RT-qPCR and their brain expression by in situ hybridization. In parallel, a cellular model of BCBM formation, combining triple negative BC cells and BBB endothelial cells, was used to differentiate the origin of biomarkers. Established metastases were associated with an increased content of circulating EVs, particularly of BBB origin. Interestingly, deregulated miRNAs in the circulation were observed prior to BCBM detection, and their brain origin was suggested by matching alterations in brain parenchyma. In vitro studies indicated that miR-194-5p and miR-205-5p are expressed and released by BC cells, endothelial cells and during their interaction. These results highlight miRNAs and EVs as biomarkers of BCBM in early and advanced stages, respectively.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , MicroARN Circulante/sangre , Vesículas Extracelulares/patología , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/genética , Línea Celular Tumoral , MicroARN Circulante/genética , Endotelio Vascular/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos BALB C , MicroARNs/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610589

RESUMEN

The tumor microenvironment has gained a lot of attention from the scientific community since it has a proven impact in the development of tumor progression and metastasis. Extracellular vesicles (EVs) are now considered one of the key players of tumor microenvironment modulation. Clear cell renal cell carcinoma (ccRCC) is the most lethal urological neoplasia and presents a high metastatic potential, which reinforces the need for the development of more effective predictive biomarkers. Our goal was to evaluate the applicability of EV-derived matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as prognostic biomarkers for ccRCC. To do so, we studied the plasma EV content of 32 patients with localized ccRCC and 29 patients with metastatic ccRCC. We observed that patients with localized disease and tumors larger than 7 cm presented higher levels of plasma EV-derived TIMP-1 mRNA when compared with patients presenting smaller tumors (p = 0.020). Moreover, patients with metastatic disease presented higher levels of EV-derived TIMP-1 mRNA when compared with patients with localized disease (p = 0.002) and when we stratified those patients in high and low levels of TIMP-1 EV-derived mRNA, the ones presenting higher levels had a lower overall survival (p = 0.030). EV-derived TIMP-1 mRNA may be a good prognostic biomarker candidate for ccRCC.


Asunto(s)
Carcinoma de Células Renales/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Vesículas Extracelulares/patología , Femenino , Humanos , Neoplasias Renales/patología , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Proyectos Piloto , Plasma , Pronóstico , ARN Mensajero/genética , Inhibidor Tisular de Metaloproteinasa-1/análisis , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidores Tisulares de Metaloproteinasas/genética , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiología
11.
HPB (Oxford) ; 20(7): 597-604, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29339034

RESUMEN

BACKGROUND: Exosomes are nanovesicles that have been shown to mediate carcinogenesis in pancreatic ductal adenocarcinoma (PDAC). Given the direct communication of pancreatic duct fluid with the tumor and its relative accessibility, we aimed to determine the feasibility of isolating and characterizing exosomes from pancreatic duct fluid. METHODS: Pancreatic duct fluid was collected from 26 patients with PDAC (n = 13), intraductal papillary mucinous neoplasm (IPMN) (n = 8) and other benign pancreatic diseases (n = 5) at resection. Exosomes were isolated by serial ultracentrifugation, proteins were identified by mass spectrometry, and their expression was evaluated by immunohistochemistry. RESULTS: Exosomes were isolated from all specimens with a mean concentration of 5.9 ± 1 × 108 particles/mL and most frequent size of 138 ± 9 nm. Among the top 35 proteins that were significantly associated with PDAC, multiple carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) and extracellular matrix (ECM) proteins were identified. Interestingly, CEACAM 1/5 expression by immunohistochemistry was seen only on tumor epithelia whereas tenascin C positivity was restricted to stroma, suggesting that both tumor and stromal cells contributed to exosomes. CONCLUSION: This is the first study showing that exosome isolation is feasible from pancreatic duct fluid, and that exosomal proteins may be utilized to diagnose patients with PDAC.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma Ductal Pancreático/química , Moléculas de Adhesión Celular/análisis , Exosomas/química , Proteínas de la Matriz Extracelular/análisis , Conductos Pancreáticos/química , Neoplasias Intraductales Pancreáticas/química , Jugo Pancreático/química , Neoplasias Pancreáticas/química , Anciano , Anciano de 80 o más Años , Carcinoma Ductal Pancreático/patología , Estudios de Factibilidad , Femenino , Humanos , Inmunohistoquímica , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Conductos Pancreáticos/patología , Neoplasias Intraductales Pancreáticas/patología , Neoplasias Pancreáticas/patología , Proyectos Piloto , Valor Predictivo de las Pruebas , Ultracentrifugación
12.
Cell Mol Neurobiol ; 37(2): 371-376, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27236697

RESUMEN

Folate deficiency and hyperhomocysteinemia have long been associated with developmental anomalies, particularly neural tube defects and neurocristopathies-a group of diverse disorders that result from defective growth, differentiation, and migration of neural crest (NC) cells. However, the exact mechanisms by which homocysteine (Hcys) and/or folate deficiencies disrupt NC development are still poorly understood in mammals. In this work, we employed a well-defined culture system to investigate the effects of Hcys and folic acid (FA) supplementation on the morphogenetic processes of murine NC cells in vitro. We demonstrated that Hcys increases outgrowth and proliferation of cephalic NC cells and impairs their differentiation into smooth muscle cells. In addition, we showed that FA alone does not directly affect the developmental dynamics of the cephalic NC cells but is able to prevent the Hcys-induced effects. Our results, therefore, suggest that elevated Hcys levels per se cause dysmorphogenesis of the cephalic NC and might contribute to neurocristopathies in mammalian embryos.


Asunto(s)
Ácido Fólico/administración & dosificación , Homocisteína/administración & dosificación , Morfogénesis/fisiología , Cresta Neural/embriología , Cresta Neural/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/embriología , Ratones , Ratones Endogámicos C57BL , Morfogénesis/efectos de los fármacos , Cresta Neural/efectos de los fármacos
13.
Cell Mol Life Sci ; 70(17): 3211-27, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23543276

RESUMEN

The co-chaperone stress-inducible protein 1 (STI1) is released by astrocytes, and has important neurotrophic properties upon binding to prion protein (PrP(C)). However, STI1 lacks a signal peptide and pharmacological approaches pointed that it does not follow a classical secretion mechanism. Ultracentrifugation, size exclusion chromatography, electron microscopy, vesicle labeling, and particle tracking analysis were used to identify three major types of extracellular vesicles (EVs) released from astrocytes with sizes ranging from 20-50, 100-200, and 300-400 nm. These EVs carry STI1 and present many exosomal markers, even though only a subpopulation had the typical exosomal morphology. The only protein, from those evaluated here, present exclusively in vesicles that have exosomal morphology was PrP(C). STI1 partially co-localized with Rab5 and Rab7 in endosomal compartments, and a dominant-negative for vacuolar protein sorting 4A (VPS4A), required for formation of multivesicular bodies (MVBs), impaired EV and STI1 release. Flow cytometry and PK digestion demonstrated that STI1 localized to the outer leaflet of EVs, and its association with EVs greatly increased STI1 activity upon PrP(C)-dependent neuronal signaling. These results indicate that astrocytes secrete a diverse population of EVs derived from MVBs that contain STI1 and suggest that the interaction between EVs and neuronal surface components enhances STI1-PrP(C) signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Choque Térmico/metabolismo , Vesículas Secretoras/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Hipocampo/citología , Immunoblotting , Ratones , Proteínas PrPC/metabolismo , Vesículas Secretoras/ultraestructura
14.
Nutrients ; 16(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474865

RESUMEN

Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model. Obese plasma EVs exhibited a decline in protein diversity while control EVs revealed significant enrichment in protein-folding functions, highlighting the importance of proper folding in maintaining metabolic homeostasis. Previously, we revealed that gut-derived EVs' proteome holds particular significance in obesity. Here, we compared plasma and gut EVs and identified four proteins exclusively present in the control state of both EVs, revealing the potential for a non-invasive assessment of gut health by analyzing blood-derived EVs. Given the relevance of post-translational modifications (PTMs), we observed a shift in chromatin-related proteins from glycation to acetylation in obese gut EVs, suggesting a regulatory mechanism targeting DNA transcription during obesity. This study provides valuable insights into novel roles of EVs and protein PTMs in the intricate mechanisms underlying obesity, shedding light on potential biomarkers and pathways for future research.


Asunto(s)
Vesículas Extracelulares , Proteómica , Humanos , Ratones , Animales , Obesidad/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Vesículas Extracelulares/metabolismo
15.
Nat Med ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942992

RESUMEN

Metastasis occurs frequently after resection of pancreatic cancer (PaC). In this study, we hypothesized that multi-parametric analysis of pre-metastatic liver biopsies would classify patients according to their metastatic risk, timing and organ site. Liver biopsies obtained during pancreatectomy from 49 patients with localized PaC and 19 control patients with non-cancerous pancreatic lesions were analyzed, combining metabolomic, tissue and single-cell transcriptomics and multiplex imaging approaches. Patients were followed prospectively (median 3 years) and classified into four recurrence groups; early (<6 months after resection) or late (>6 months after resection) liver metastasis (LiM); extrahepatic metastasis (EHM); and disease-free survivors (no evidence of disease (NED)). Overall, PaC livers exhibited signs of augmented inflammation compared to controls. Enrichment of neutrophil extracellular traps (NETs), Ki-67 upregulation and decreased liver creatine significantly distinguished those with future metastasis from NED. Patients with future LiM were characterized by scant T cell lobular infiltration, less steatosis and higher levels of citrullinated H3 compared to patients who developed EHM, who had overexpression of interferon target genes (MX1 and NR1D1) and an increase of CD11B+ natural killer (NK) cells. Upregulation of sortilin-1 and prominent NETs, together with the lack of T cells and a reduction in CD11B+ NK cells, differentiated patients with early-onset LiM from those with late-onset LiM. Liver profiles of NED closely resembled those of controls. Using the above parameters, a machine-learning-based model was developed that successfully predicted the metastatic outcome at the time of surgery with 78% accuracy. Therefore, multi-parametric profiling of liver biopsies at the time of PaC diagnosis may determine metastatic risk and organotropism and guide clinical stratification for optimal treatment selection.

16.
Cancers (Basel) ; 15(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37370815

RESUMEN

Since the discovery of the Bence Jones protein in the middle to late 1800s and the subsequent identification of the carcinoembryonic antigen and alpha-fetoprotein in the 1970s, it has been demonstrated that the analysis of biofluids is essential to the diagnostic and follow-up processes of cancer [...].

17.
Food Funct ; 14(1): 15-31, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36525310

RESUMEN

Effective strategies in prolonging life- and health span are increasingly recognized as acting as mild stressors. Micronutrients and other dietary compounds such as (poly)phenols may act as moderate stressors and confer protective effects via a preconditioning phenomenon. (Poly)phenols and their metabolites may not need to reach their target cells to produce biologically significant responses, so that cells exposed to it at entry points may communicate signals to other cells. One of such "communication" mechanisms could occur through extracellular vesicles, including exosomes. In vitro loading of exosomes with (poly)phenols has been used to achieve targeted exosome homing. However, it is unknown if similar shuttling phenomena occur in vivo upon (poly)phenols consumption. Alternatively, exposure to (poly)phenols might trigger responses in exposed organs, which can subsequently signal to cells distant from exposure sites via exosomes. The currently available studies favor indirect effects of (poly)phenols, tempting to suggest a "billiard-like" or "domino-like" propagating effect mediated by quantitative and qualitative changes in exosomes triggered by (poly)phenols. In this review, we discuss the limited current data available on how (poly)phenols exposure can potentially modify exosomes activity, highlighting major questions regarding how (epi)genetic, physiological, and gut microbiota factors can modulate and be modulated by the putative exosome-(poly)phenolic compound interplay that still remains to be fully understood.


Asunto(s)
Exosomas , Vesículas Extracelulares , Exosomas/metabolismo , Fenoles/farmacología , Fenoles/metabolismo , Vesículas Extracelulares/metabolismo , Dieta
18.
Stem Cells ; 29(7): 1126-36, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21608082

RESUMEN

Prion protein (PrP(C) ), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C) -STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+) ) and PrP(C) -null (Prnp(0/0) ) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C) , with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Células-Madre Neurales/fisiología , Priones/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/biosíntesis , Proteínas de Choque Térmico/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Priones/biosíntesis , Priones/genética
19.
Lab Chip ; 22(6): 1093-1125, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35253032

RESUMEN

Extracellular vesicles (EVs) are small lipidic particles packed with proteins, DNA, messenger RNA and microRNAs of their cell of origin that act as critical players in cell-cell communication. These vesicles have been identified as pivotal mediators in cancer progression and the formation of metastatic niches. Hence, their isolation and analysis from circulating biofluids is envisioned as the next big thing in the field of liquid biopsies for early non-invasive diagnosis and patient follow-up. Despite the promise, current benchtop isolation strategies are not compatible with point-of-care testing in a clinical setting. Microfluidic platforms are disruptive technologies capable of recovering, analyzing, and quantifying EVs within clinical samples with limited volume, in a high-throughput manner with elevated sensitivity and multiplexing capabilities. Moreover, they can also be employed for the controlled production of synthetic EVs and effective drug loading to produce EV-based therapies. In this review, we explore the use of microfluidic platforms for the isolation, characterization, and quantification of EVs in cancer, and compare these platforms with the conventional methodologies. We also highlight the state-of-the-art in microfluidic approaches for EV-based cancer therapeutics. Finally, we analyze the currently active or recently completed clinical trials involving EVs for cancer diagnosis, treatment or therapy monitoring and examine the future of EV-based point-of-care testing platforms in the clinic and EV-based therapy production by the industry.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias , Vesículas Extracelulares/metabolismo , Humanos , Biopsia Líquida , MicroARNs/metabolismo , Microfluídica , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/terapia
20.
Front Oncol ; 12: 860849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800053

RESUMEN

Multiple myeloma (MM) is a hematological malignancy of clonal antibody-secreting plasma cells (PCs). MM diagnosis and risk stratification rely on bone marrow (BM) biopsy, an invasive procedure prone to sample bias. Liquid biopsies, such as extracellular vesicles (EV) in peripheral blood (PB), hold promise as new minimally invasive tools. Real-world studies analyzing patient-derived EV proteome are rare. Here, we characterized a small EV protein content from PB and BM samples in a cohort of 102 monoclonal gammopathies patients routinely followed in the clinic and 223 PB and 111 BM samples were included. We investigated whether EV protein and particle concentration could predict an MM patient prognosis. We found that a high EV protein/particle ratio, or EV cargo >0.6 µg/108 particles, is related to poorer survival and immune dysfunction. These results were supported at the protein level by mass spectrometry. We report a set of PB EV-proteins (PDIA3, C4BPA, BTN1A1, and TNFSF13) with a new biomarker potential for myeloma patient outcomes. The high proteomic similarity between PB and BM matched pairs supports the use of circulating EV as a counterpart of the BM EV proteome. Overall, we found that the EV protein content is related to patient outcomes, such as survival, immune dysfunction, and possibly treatment response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA