Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(43): 11006-11011, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297406

RESUMEN

Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightly-linked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation.


Asunto(s)
Flores/genética , Flujo Génico/genética , Islas Genómicas/genética , Selección Genética/genética , Antirrhinum/genética , Cromosomas de las Plantas/genética , Color , Especiación Genética , Genoma de Planta/genética
2.
Proc Natl Acad Sci U S A ; 113(52): 15132-15137, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956643

RESUMEN

Cytosine DNA methylation regulates the expression of eukaryotic genes and transposons. Methylation is copied by methyltransferases after DNA replication, which results in faithful transmission of methylation patterns during cell division and, at least in flowering plants, across generations. Transgenerational inheritance is mediated by a small group of cells that includes gametes and their progenitors. However, methylation is usually analyzed in somatic tissues that do not contribute to the next generation, and the mechanisms of transgenerational inheritance are inferred from such studies. To gain a better understanding of how DNA methylation is inherited, we analyzed purified Arabidopsis thaliana sperm and vegetative cells-the cell types that comprise pollen-with mutations in the DRM, CMT2, and CMT3 methyltransferases. We find that DNA methylation dependency on these enzymes is similar in sperm, vegetative cells, and somatic tissues, although DRM activity extends into heterochromatin in vegetative cells, likely reflecting transcription of heterochromatic transposons in this cell type. We also show that lack of histone H1, which elevates heterochromatic DNA methylation in somatic tissues, does not have this effect in pollen. Instead, levels of CG methylation in wild-type sperm and vegetative cells, as well as in wild-type microspores from which both pollen cell types originate, are substantially higher than in wild-type somatic tissues and similar to those of H1-depleted roots. Our results demonstrate that the mechanisms of methylation maintenance are similar between pollen and somatic cells, but the efficiency of CG methylation is higher in pollen, allowing methylation patterns to be accurately inherited across generations.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Citosina , ADN (Citosina-5-)-Metiltransferasas/genética , Elementos Transponibles de ADN , Epigénesis Genética , Genoma de Planta , Heterocromatina/metabolismo , Histonas/metabolismo , Hojas de la Planta
3.
Science ; 358(6365): 925-928, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29146812

RESUMEN

Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution. The sRNAs repress a pigment biosynthesis gene, creating a yellow highlight at the site of pollinator entry. The inverted duplication exhibits steep clines in allele frequency in a natural hybrid zone, showing that the allele is under selection. Thus, regulatory interactions of evolutionarily recent sRNAs can be acted upon by selection and contribute to the evolution of phenotypic diversity.


Asunto(s)
Antirrhinum/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética , Pigmentos Biológicos/genética , ARN Pequeño no Traducido/genética , Antirrhinum/anatomía & histología , Color , Evolución Molecular , Flores/anatomía & histología , Duplicación de Gen , Frecuencia de los Genes , Polinización , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA