Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Ther ; 31(4): 1074-1087, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36793210

RESUMEN

While a number of methods exist to investigate CRISPR off-target (OT) editing, few have been compared head-to-head in primary cells after clinically relevant editing processes. Therefore, we compared in silico tools (COSMID, CCTop, and Cas-OFFinder) and empirical methods (CHANGE-Seq, CIRCLE-Seq, DISCOVER-Seq, GUIDE-Seq, and SITE-Seq) after ex vivo hematopoietic stem and progenitor cell (HSPC) editing. We performed editing using 11 different gRNAs complexed with Cas9 protein (high-fidelity [HiFi] or wild-type versions), then performed targeted next-generation sequencing of nominated OT sites identified by in silico and empirical methods. We identified an average of less than one OT site per guide RNA (gRNA) and all OT sites generated using HiFi Cas9 and a 20-nt gRNA were identified by all OT detection methods with the exception of SITE-seq. This resulted in high sensitivity for the majority of OT nomination tools and COSMID, DISCOVER-Seq, and GUIDE-Seq attained the highest positive predictive value (PPV). We found that empirical methods did not identify OT sites that were not also identified by bioinformatic methods. This study supports that refined bioinformatic algorithms could be developed that maintain both high sensitivity and PPV, thereby enabling more efficient identification of potential OT sites without compromising a thorough examination for any given gRNA.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Antígenos CD34 , Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , ARN Guía de Sistemas CRISPR-Cas
2.
Mol Ther ; 29(3): 1016-1027, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33678249

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors have the unique property of being able to perform genomic targeted integration (TI) without inducing a double-strand break (DSB). In order to improve our understanding of the mechanism behind TI mediated by AAV and improve its efficiency, we performed an unbiased genetic screen in human cells using a promoterless AAV-homologous recombination (AAV-HR) vector system. We identified that the inhibition of the Fanconi anemia complementation group M (FANCM) protein enhanced AAV-HR-mediated TI efficiencies in different cultured human cells by ∼6- to 9-fold. The combined knockdown of the FANCM and two proteins also associated with the FANCM complex, RecQ-mediated genome instability 1 (RMI1) and Bloom DNA helicase (BLM) from the BLM-topoisomerase IIIα (TOP3A)-RMI (BTR) dissolvase complex (RMI1, having also been identified in our screen), led to the enhancement of AAV-HR-mediated TI up to ∼17 times. AAV-HR-mediated TI in the presence of a nuclease (CRISPR-Cas9) was also increased by ∼1.5- to 2-fold in FANCM and RMI1 knockout cells, respectively. Furthermore, knockdown of FANCM in human CD34+ hematopoietic stem and progenitor cells (HSPCs) increased AAV-HR-mediated TI by ∼3.5-fold. This study expands our knowledge on the mechanisms related to AAV-mediated TI, and it highlights new pathways that might be manipulated for future improvements in AAV-HR-mediated TI.


Asunto(s)
Sistemas CRISPR-Cas , ADN Helicasas/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Dependovirus/genética , Edición Génica , Células Madre Hematopoyéticas/metabolismo , RecQ Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Vectores Genéticos , Células HeLa , Células Madre Hematopoyéticas/citología , Recombinación Homóloga , Humanos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
3.
Mol Ther ; 26(10): 2431-2442, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30005866

RESUMEN

Genome-editing technologies are currently being translated to the clinic. However, cellular effects of the editing machinery have yet to be fully elucidated. Here, we performed global microarray-based gene expression measurements on human CD34+ hematopoietic stem and progenitor cells that underwent editing. We probed effects of the entire editing process as well as each component individually, including electroporation, Cas9 (mRNA or protein) with chemically modified sgRNA, and AAV6 transduction. We identified differentially expressed genes relative to control treatments, which displayed enrichment for particular biological processes. All editing machinery components elicited immune, stress, and apoptotic responses. Cas9 mRNA invoked the greatest amount of transcriptional change, eliciting a distinct viral response and global transcriptional downregulation, particularly of metabolic and cell cycle processes. Electroporation also induced significant transcriptional change, with notable downregulation of metabolic processes. Surprisingly, AAV6 evoked no detectable viral response. We also found Cas9/sgRNA ribonucleoprotein treatment to be well tolerated, in spite of eliciting a DNA damage signature. Overall, this data establishes a benchmark for cellular tolerance of CRISPR/Cas9-AAV6-based genome editing, ensuring that the clinical protocol is as safe and efficient as possible.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Análisis por Micromatrices/métodos , Parvovirinae/genética , Antígenos CD34/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Dependovirus , Electroporación , Edición Génica/métodos , Regulación de la Expresión Génica/genética , Vectores Genéticos/uso terapéutico , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Células Madre/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 112(13): 4062-7, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25787250

RESUMEN

Insulinomas are pancreatic islet tumors that inappropriately secrete insulin, producing hypoglycemia. Exome and targeted sequencing revealed that 14 of 43 insulinomas harbored the identical somatic mutation in the DNA-binding zinc finger of the transcription factor Yin Yang 1 (YY1). Chromatin immunoprecipitation sequencing (ChIP-Seq) showed that this T372R substitution changes the DNA motif bound by YY1. Global analysis of gene expression demonstrated distinct clustering of tumors with and without YY1(T372R) mutations. Genes showing large increases in expression in YY1(T372R) tumors included ADCY1 (an adenylyl cyclase) and CACNA2D2 (a Ca(2+) channel); both are expressed at very low levels in normal ß-cells and show mutation-specific YY1 binding sites. Both gene products are involved in key pathways regulating insulin secretion. Expression of these genes in rat INS-1 cells demonstrated markedly increased insulin secretion. These findings indicate that YY1(T372R) mutations are neomorphic, resulting in constitutive activation of cAMP and Ca(2+) signaling pathways involved in insulin secretion.


Asunto(s)
Regulación de la Expresión Génica , Insulinoma/genética , Mutación Missense , Neoplasias Pancreáticas/genética , Factor de Transcripción YY1/genética , Adenilil Ciclasas/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Sitios de Unión , Glucemia/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Estudios de Cohortes , AMP Cíclico/metabolismo , Femenino , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citología , Insulinoma/metabolismo , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Neoplasias Pancreáticas/metabolismo , Unión Proteica , Factor de Transcripción YY1/metabolismo
5.
Nat Commun ; 15(1): 111, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169468

RESUMEN

Genome editing by homology directed repair (HDR) is leveraged to precisely modify the genome of therapeutically relevant hematopoietic stem and progenitor cells (HSPCs). Here, we present a new approach to increasing the frequency of HDR in human HSPCs by the delivery of an inhibitor of 53BP1 (named "i53") as a recombinant peptide. We show that the use of i53 peptide effectively increases the frequency of HDR-mediated genome editing at a variety of therapeutically relevant loci in HSPCs as well as other primary human cell types. We show that incorporating the use of i53 recombinant protein allows high frequencies of HDR while lowering the amounts of AAV6 needed by 8-fold. HDR edited HSPCs were capable of long-term and bi-lineage hematopoietic reconstitution in NSG mice, suggesting that i53 recombinant protein might be safely integrated into the standard CRISPR/AAV6-mediated genome editing protocol to gain greater numbers of edited cells for transplantation of clinically meaningful cell populations.


Asunto(s)
Edición Génica , Trasplante de Células Madre Hematopoyéticas , Humanos , Animales , Ratones , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Proteínas Recombinantes/metabolismo , Péptidos/metabolismo , Sistemas CRISPR-Cas
6.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766216

RESUMEN

Alpha-thalassemia is an autosomal recessive disease with increasing worldwide prevalence. The molecular basis is due to mutation or deletion of one or more duplicated α-globin genes, and disease severity is directly related to the number of allelic copies compromised. The most severe form, α-thalassemia major (αTM), results from loss of all four copies of α-globin and has historically resulted in fatality in utero. However, in utero transfusions now enable survival to birth. Postnatally, patients face challenges similar to ß-thalassemia, including severe anemia and erythrotoxicity due to imbalance of ß-globin and α-globin chains. While curative, hematopoietic stem cell transplantation (HSCT) is limited by donor availability and potential transplant-related complications. Despite progress in genome editing treatments for ß-thalassemia, there is no analogous curative option for patients suffering from α-thalassemia. To address this, we designed a novel Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the ß-globin locus in αTM patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette dramatically increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently normal hemoglobin. By directing edited HSPCs toward increased production of clinically relevant RBCs instead of other divergent cell types, this approach has the potential to mitigate the limitations of traditional HSCT for the hemoglobinopathies, including low genome editing and low engraftment rates. These findings support development of a definitive ex vivo autologous genome editing strategy that may be curative for α-thalassemia.

7.
Nat Biomed Eng ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886504

RESUMEN

Some gene polymorphisms can lead to monogenic diseases, whereas other polymorphisms may confer beneficial traits. A well-characterized example is congenital erythrocytosis-the non-pathogenic hyper-production of red blood cells-that is caused by a truncated erythropoietin receptor. Here we show that Cas9-mediated genome editing in CD34+ human haematopoietic stem and progenitor cells (HSPCs) can recreate the truncated form of the erythropoietin receptor, leading to substantial increases in erythropoietic output. We also show that combining the expression of the cDNA of a truncated erythropoietin receptor with a previously reported genome-editing strategy to fully replace the HBA1 gene with an HBB transgene in HSPCs (to restore normal haemoglobin production in cells with a ß-thalassaemia phenotype) gives the edited HSPCs and the healthy red blood cell phenotype a proliferative advantage. Combining knowledge of human genetics with precise genome editing to insert natural human variants into therapeutic cells may facilitate safer and more effective genome-editing therapies for patients with genetic diseases.

8.
Dev Cell ; 59(9): 1110-1131.e22, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38569552

RESUMEN

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Hematopoyéticas , Células Madre Pluripotentes , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/citología , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
9.
Nat Biotechnol ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537500

RESUMEN

Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.

10.
Front Genome Ed ; 4: 1112956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36742457

RESUMEN

[This corrects the article DOI: 10.3389/fgeed.2022.1050507.].

11.
Front Genome Ed ; 4: 1050507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439866

RESUMEN

The discovery of CRISPR has allowed site-specific genomic modification to become a reality and this technology is now being applied in a number of human clinical trials. While this technology has demonstrated impressive efficacy in the clinic to date, there remains the potential for unintended on- and off-target effects of CRISPR nuclease activity. A variety of in silico-based prediction tools and empirically derived experimental methods have been developed to identify the most common unintended effect-small insertions and deletions at genomic sites with homology to the guide RNA. However, large-scale aberrations have recently been reported such as translocations, inversions, deletions, and even chromothripsis. These are more difficult to detect using current workflows indicating a major unmet need in the field. In this review we summarize potential sequencing-based solutions that may be able to detect these large-scale effects even at low frequencies of occurrence. In addition, many of the current clinical trials using CRISPR involve ex vivo isolation of a patient's own stem cells, modification, and re-transplantation. However, there is growing interest in direct, in vivo delivery of genome editing tools. While this strategy has the potential to address disease in cell types that are not amenable to ex vivo manipulation, in vivo editing has only one desired outcome-on-target editing in the cell type of interest. CRISPR activity in unintended cell types (both on- and off-target) is therefore a major safety as well as ethical concern in tissues that could enable germline transmission. In this review, we have summarized the strengths and weaknesses of current editing and delivery tools and potential improvements to off-target and off-tissue CRISPR activity detection. We have also outlined potential mitigation strategies that will ensure that the safety of CRISPR keeps pace with efficacy, a necessary requirement if this technology is to realize its full translational potential.

12.
Nat Commun ; 13(1): 4724, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953477

RESUMEN

As CRISPR-based therapies enter the clinic, evaluation of safety remains a critical and active area of study. Here, we employ a clinical next generation sequencing (NGS) workflow to achieve high sequencing depth and detect ultra-low frequency variants across exons of genes associated with cancer, all exons, and genome wide. In three separate primary human hematopoietic stem and progenitor cell (HSPC) donors assessed in technical triplicates, we electroporated high-fidelity Cas9 protein targeted to three loci (AAVS1, HBB, and ZFPM2) and harvested genomic DNA at days 4 and 10. Our results demonstrate that clinically relevant delivery of high-fidelity Cas9 to primary HSPCs and ex vivo culture up to 10 days does not introduce or enrich for tumorigenic variants and that even a single SNP in a gRNA spacer sequence is sufficient to eliminate Cas9 off-target activity in primary, repair-competent human HSPCs.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Guía de Kinetoplastida/genética
13.
Nat Med ; 27(4): 677-687, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33737751

RESUMEN

ß-Thalassemia pathology is due not only to loss of ß-globin (HBB), but also to erythrotoxic accumulation and aggregation of the ß-globin-binding partner, α-globin (HBA1/2). Here we describe a Cas9/AAV6-mediated genome editing strategy that can replace the entire HBA1 gene with a full-length HBB transgene in ß-thalassemia-derived hematopoietic stem and progenitor cells (HSPCs), which is sufficient to normalize ß-globin:α-globin messenger RNA and protein ratios and restore functional adult hemoglobin tetramers in patient-derived red blood cells. Edited HSPCs were capable of long-term and bilineage hematopoietic reconstitution in mice, establishing proof of concept for replacement of HBA1 with HBB as a novel therapeutic strategy for curing ß-thalassemia.


Asunto(s)
Terapia Genética , Células Madre Hematopoyéticas/metabolismo , Hemoglobinas/metabolismo , Globinas alfa/genética , Globinas beta/genética , Talasemia beta/genética , Talasemia beta/terapia , Anemia de Células Falciformes/patología , Animales , Antígenos CD34/metabolismo , Dependovirus/genética , Eritrocitos/metabolismo , Edición Génica , Genes Reporteros , Sitios Genéticos , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Regiones Promotoras Genéticas/genética , ARN Guía de Kinetoplastida/genética
14.
Sci Transl Med ; 13(598)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135108

RESUMEN

Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the ß-globin gene (HBB). Ex vivo ß-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.


Asunto(s)
Anemia de Células Falciformes , Compuestos Heterocíclicos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Animales , Sistemas CRISPR-Cas/genética , Edición Génica , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas , Humanos , Ratones , Reproducibilidad de los Resultados , Globinas beta/genética
15.
Nat Commun ; 11(1): 2713, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483127

RESUMEN

Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >106-fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/genética , Edición Génica/métodos , Células Madre Pluripotentes/metabolismo , Trasplante de Células Madre/métodos , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Tacrolimus/análogos & derivados , Tacrolimus/farmacología , Teratoma/genética , Teratoma/metabolismo , Teratoma/prevención & control
16.
Cell Stem Cell ; 24(5): 821-828.e5, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051134

RESUMEN

Genome editing of human pluripotent stem cells (hPSCs) provides powerful opportunities for in vitro disease modeling, drug discovery, and personalized stem cell-based therapeutics. Currently, only small edits can be engineered with high frequency, while larger modifications suffer from low efficiency and a resultant need for selection markers. Here, we describe marker-free genome editing in hPSCs using Cas9 ribonucleoproteins (RNPs) in combination with AAV6-mediated DNA repair template delivery. We report highly efficient and bi-allelic integration frequencies across multiple loci and hPSC lines, achieving mono-allelic editing frequencies of up to 94% at the HBB locus. Using this method, we show robust bi-allelic correction of homozygous sickle cell mutations in a patient-derived induced PSC (iPSC) line. Thus, this strategy shows significant utility for generating hPSCs with large gene integrations and/or single-nucleotide changes at high frequency and without the need for introducing selection genes, enhancing the applicability of hPSC editing for research and translational uses.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Genotipo , Células Madre Pluripotentes/fisiología , Proteína 9 Asociada a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Reparación del ADN , Edición Génica/métodos , Frecuencia de los Genes , Ingeniería Genética , Vectores Genéticos/genética , Recombinación Homóloga , Humanos , Patología Molecular , Donantes de Tejidos
17.
Nat Med ; 25(2): 249-254, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30692695

RESUMEN

The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials.


Asunto(s)
Inmunidad Adaptativa , Proteína 9 Asociada a CRISPR/metabolismo , Adulto , Separación Celular , Femenino , Humanos , Inmunidad Humoral , Masculino , Linfocitos T/inmunología
18.
Mol Ther Nucleic Acids ; 12: 89-104, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30195800

RESUMEN

Engineered nuclease-mediated gene targeting through homologous recombination (HR) in hematopoietic stem and progenitor cells (HSPCs) has the potential to treat a variety of genetic hematologic and immunologic disorders. Here, we identify critical parameters to reproducibly achieve high frequencies of RNA-guided (single-guide RNA [sgRNA]; CRISPR)-Cas9 nuclease (Cas9/sgRNA) and rAAV6-mediated HR at the ß-globin (HBB) locus in HSPCs. We identified that by transducing HSPCs with rAAV6 post-electroporation, there was a greater than 2-fold electroporation-aided transduction (EAT) of rAAV6 endocytosis with roughly 70% of the cell population having undergone transduction within 2 hr. When HSPCs are cultured at low densities (1 × 105 cells/mL) prior to HBB targeting, HSPC expansion rates are significantly positively correlated with HR frequencies in vitro as well as in repopulating cells in immunodeficient NSG mice in vivo. We also show that culturing fluorescence-activated cell sorting (FACS)-enriched HBB-targeted HSPCs at low cell densities in the presence of the small molecules, UM171 and SR1, stimulates the expansion of gene-edited HSPCs as measured by higher engraftment levels in immunodeficient mice. This work serves not only as an optimized protocol for genome editing HSPCs at the HBB locus for the treatment of ß-hemoglobinopathies but also as a foundation for editing HSPCs at other loci for both basic and translational research.

19.
J Clin Endocrinol Metab ; 97(9): E1774-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22740705

RESUMEN

CONTEXT: The underlying molecular alterations causing sporadic parathyroid adenomas that drive primary hyperparathyroidism have not been thoroughly defined. OBJECTIVE: The aim of the study was to investigate the occurrence of somatic mutations driving tumor formation and progression in sporadic parathyroid adenoma using whole-exome sequencing. DESIGN: Eight matched tumor-constitutional DNA pairs from patients with sporadic parathyroid adenomas underwent whole-exome capture and high-throughput sequencing. Selected genes were analyzed for mutations in an additional 185 parathyroid adenomas. RESULTS: Four of eight tumors displayed a frame shift deletion or nonsense mutation in MEN1, which was accompanied by loss of heterozygosity of the remaining wild-type allele. No other mutated genes were shared among the eight tumors. One tumor harbored a Y641N mutation of the histone methyltransferase EZH2 gene, previously linked to myeloid and lymphoid malignancy formation. Targeted sequencing in the additional 185 parathyroid adenomas revealed a high rate of MEN1 mutations (35%). Furthermore, this targeted sequencing identified an additional parathyroid adenoma that contained the identical, somatic EZH2 mutation that was found by exome sequencing. CONCLUSION: This study confirms the frequent role of the loss of heterozygosity of chromosome 11 and MEN1 gene alterations in sporadic parathyroid adenomas and implicates a previously unassociated methyltransferase gene, EZH2, in endocrine tumorigenesis.


Asunto(s)
Adenoma/genética , ADN de Neoplasias/genética , Exones/genética , Mutación/genética , Neoplasias de las Paratiroides/genética , Análisis de Secuencia de ADN , Estudios de Cohortes , Análisis Mutacional de ADN , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Neoplasia Endocrina Múltiple Tipo 1/genética , Mutación/fisiología , Complejo Represivo Polycomb 2/genética , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA