Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 290(10): 6047-57, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25593313

RESUMEN

Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER-) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Equol/administración & dosificación , Factor 4G Eucariótico de Iniciación/metabolismo , Isoflavonas/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , Receptores de Estrógenos/genética , Glycine max/química
2.
Nutr Cancer ; 68(1): 154-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26771440

RESUMEN

We previously reported that dietary genistein inhibits mammary tumor growth and metastasis of the highly metastatic MDA-MB-435 cancer cells in immunocompromised mice. The purpose herein was to characterize the role of the novel oncogenic microRNA (miRNA) miR-155 in the anticancer effects of genistein in metastatic breast cancer. The effect of genistein was determined on breast cancer cell viability, apoptosis, and expression of miR-155 and its targets. At low physiologically relevant concentrations, genistein inhibits cell viability and induces apoptosis in metastatic MDA-MB-435 and Hs578t breast cancer cells, without affecting the viability of nonmetastatic MCF-7 breast cancer cells. In parallel with reduced cell viability, miR-155 is downregulated, whereas proapoptotic and anticell proliferative miR-155 targets FOXO3, PTEN, casein kinase, and p27 are upregulated in MDA-MB-435 and Hs578t cells in response to genistein treatment. However, miR-155 levels remain unchanged in response to genistein in the MCF-7 cells. Ectopic expression of miR-155 in MDA-MB-435 and Hs578t cells decreases the effects of genistein on cell viability and abrogates the effects of genistein on apoptosis and expression of proapoptotic genes. Therefore, genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein in metastatic breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Genisteína/farmacología , MicroARNs/análisis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Femenino , Humanos , Células MCF-7 , Fosfohidrolasa PTEN/análisis
3.
Transl Oncol ; 44: 101928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489873

RESUMEN

Trastuzumab and trastuzumab-based treatments are the standard of care for breast cancer patients who overexpress the human epidermal growth factor receptor 2 (HER2). However, patients often develop resistance to trastuzumab via signaling from alternative growth factor receptors that converge to activate guanine nucleotide exchange factors (GEFs) that in turn activate the Rho GTPases Rac and Cdc42. Since Rac and Cdc42 have been implicated in high tumor grade and therapy resistance, inhibiting the activity of Rac and Cdc42 is a rational strategy to overcome HER2-targeted therapy resistance. Therefore, our group developed MBQ-167, a dual Rac/Cdc42 inhibitor with IC50s of 103 nM and 78 nM for Rac and Cdc42, respectively, which is highly effective in reducing cell and tumor growth and metastasis in breast cancer cell and mouse models. Herein, we created a trastuzumab resistant variant of the SKBR3 HER2 positive breast cancer cell line and show that Rac activation is a central mechanism in trastuzumab resistance. Next, we tested the potential of targeting MBQ-167 to HER2 overexpressing trastuzumab-resistant cell lines in vitro, and show that MBQ-167, but not trastuzumab, reduces cell viability and induces apoptosis. When MBQ-167 was targeted to mammary fatpad tumors established from HER2 overexpressing cells via immunoliposomes functionalized with trastuzumab, MBQ-167 and MBQ-167-loaded liposomes show equal efficacy in reducing the viability of trastuzumab-resistant cells, inhibiting tumor growth in mouse xenografts, and reducing metastasis to lungs and liver. This study demonstrates the efficacy of MBQ-167 as an alternative therapeutic in HER2 overexpressing cancers, delivered either in free form or in liposomes.

4.
Cancer Res Commun ; 2(12): 1711-1726, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36861094

RESUMEN

Rac and Cdc42, are homologous GTPases that regulate cell migration, invasion, and cell cycle progression; thus, representing key targets for metastasis therapy. We previously reported on the efficacy of MBQ-167, which blocks both Rac1 and Cdc42 in breast cancer cells and mouse models of metastasis. To identify compounds with increased activity, a panel of MBQ-167 derivatives was synthesized, maintaining its 9-ethyl-3-(1H-1,2,3-triazol-1-yl)-9H-carbazole core. Similar to MBQ-167, MBQ-168 and EHop-097, inhibit activation of Rac and Rac1B splice variant and breast cancer cell viability, and induce apoptosis. MBQ-167 and MBQ-168 inhibit Rac and Cdc42 by interfering with guanine nucleotide binding, and MBQ-168 is a more effective inhibitor of PAK (1,2,3) activation. EHop-097 acts via a different mechanism by inhibiting the interaction of the guanine nucleotide exchange factor (GEF) Vav with Rac. MBQ-168 and EHop-097 inhibit metastatic breast cancer cell migration, and MBQ-168 promotes loss of cancer cell polarity to result in disorganization of the actin cytoskeleton and detachment from the substratum. In lung cancer cells, MBQ-168 is more effective than MBQ-167 or EHop-097 at reducing ruffle formation in response to EGF. Comparable to MBQ-167, MBQ-168 significantly inhibits HER2+ tumor growth and metastasis to lung, liver, and spleen. Both MBQ-167 and MBQ-168 inhibit the cytochrome P450 (CYP) enzymes 3A4, 2C9, and 2C19. However, MBQ-168 is ~10X less potent than MBQ-167 at inhibiting CYP3A4, thus demonstrating its utility in relevant combination therapies. In conclusion, the MBQ-167 derivatives MBQ-168 and EHop-097 are additional promising anti metastatic cancer compounds with similar and distinct mechanisms.


Asunto(s)
Proteínas de Unión al GTP , Proteínas de Unión al GTP rac , Ratones , Animales , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Movimiento Celular , División Celular
5.
Mol Cancer Ther ; 20(12): 2420-2432, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607932

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer, with a high predisposition for locally invasive and metastatic cancer. With the objective to reduce cancer metastasis, we developed small molecule inhibitors to target the drivers of metastasis, the Rho GTPases Rac and Cdc42. Of these, MBQ-167 inhibits both Rac and Cdc42 with IC50s of 103 and 78 nmol/L, respectively; and consequently, inhibits p21-activated kinase (PAK) signaling, metastatic cancer cell proliferation, migration, and mammosphere growth; induces cell-cycle arrest and apoptosis; and decreases HER2-type mammary fatpad tumor growth and metastasis (Humphries-Bickley and colleagues, 2017). Herein, we used nuclear magnetic resonance to show that MBQ-167 directly interacts with Rac1 to displace specific amino acids, and consequently inhibits Rac.GTP loading and viability in TNBC cell lines. Phosphokinome arrays in the MDA-MB-231 human TNBC cells show that phosphorylation status of kinases independent of the Rac/Cdc42/PAK pathway are not significantly changed following 200 nmol/L MBQ-167 treatment. Western blotting shows that initial increases in phospho-c-Jun and phospho-CREB in response to MBQ-167 are not sustained with prolonged exposure, as also confirmed by a decrease in their transcriptional targets. MBQ-167 inhibits tumor growth, and spontaneous and experimental metastasis in immunocompromised (human TNBC) and immunocompetent (mouse TNBC) models. Moreover, per oral administration of MBQ-167 at 100 mg/kg body weight is not toxic to immunocompetent BALB/c mice and has a half-life of 4.6 hours in plasma. These results highlight the specificity, potency, and bioavailability of MBQ-167, and support its clinical potential as a TNBC therapeutic.


Asunto(s)
Neoplasias de la Mama Triple Negativas/genética , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones SCID , Neoplasias de la Mama Triple Negativas/patología
6.
Pharmaceutics ; 12(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076517

RESUMEN

MBQ-167 is a dual inhibitor of the Rho GTPases Rac and Cdc42 that has shown promising results as an anti-cancer therapeutic at the preclinical stage. This drug has been tested in vitro and in vivo in metastatic breast cancer mouse models. The aim of this study is to develop a physiologically based pharmacokinetic/pharmacodynamic (PBPK-PD) model of MBQ-167 to predict tumor growth inhibition following intraperitoneal (IP) administration in mice bearing Triple Negative and HER2+ mammary tumors. PBPK and Simeoni tumor growth inhibition (TGI) models were developed using the Simcyp V19 Animal Simulator. Our developed PBPK framework adequately describes the time course of MBQ-167 in each of the mouse tissues (e.g., lungs, heart, liver, kidneys, spleen, plasma) and tumor, since the predicted results were consistent with the experimental data. The developed PBPK-PD model successfully predicts tumor shrinkage in HER2+ and triple-negative breast tumors after the intraperitoneal administration of 1 and 10 mg/kg body weight (BW) dose level of MBQ-167 three times a week. The findings from this study suggest that MBQ-167 has a higher net effect and potency inhibiting Triple Negative mammary tumor growth compared to HER2+ and that liver metabolism is the major route of elimination of this drug.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA