Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Hum Reprod ; 22(11): 778-790, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27475493

RESUMEN

STUDY QUESTION: What are the mechanisms by which the preimplantation restraint stress (PIRS) impairs embryo development and pregnancy outcome? SUMMARY ANSWER: PIRS impairs embryo development by triggering apoptosis in mouse oviducts and embryos,and this involves activation of the Fas system. WHAT IS KNOWN ALREADY: Although it is known that the early stages of pregnancy are more vulnerable than later stages to prenatalstress, studies on the effect of preimplantation stress on embryo developmentare limited. Furthermore, the mechanisms by which psychological stress impairs embryo development are largely unknown. These issues are worth exploring using the mouse PIRS models because restraint of mice is an efficient experimental procedure developed for studies of psychogenic stress. STUDY DESIGN, SIZE AND DURATION: Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in FasL in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female and male mice were used 8-10 weeks and 10-12 weeks after birth, respectively. Female mice showing vaginal plugs were paired by weight and randomly assigned to restraint treatments or as controls. For restraint treatment, an individual mouse was put in a micro-cage with food and water available. Control mice remained in their cages with food and water during the time treated females were stressed. PARTICIPANTS/MATERIALS, SETTING, METHODS: Female mice were exposed to PIRS for 48 h starting from 16:00 on the day of vaginal plug detection. At the end of PIRS, levels of glucorticoids (GC), corticotropin-releasing hormone (CRH)and redox potential were measured in serum, while levels of GC, GC receptor (GR), CRH, CRH receptor (CRHR), Fas and Fas ligand (FasL) protein, mRNAs for brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), oxidative stress (OS) and apoptosis were examined in oviducts. Preimplantation development and levels of GR, Fas, redox potential and apoptosis were observed in embryos recovered at different times after the initiation of PIRS. The gld mice were used to confirm a role for the Fas system in triggering apoptosis of embryos and oviducts. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to those in control mice, while the number of blastocysts/mouse (5.0 ± 0.7 versus 11.1 ± 0.5), cell number/blastocyst (49.1 ± 1.3 versus 61.5 ± 0.9), percentages of term pregnancy (37.5% versus 90.9%) and litter size (3.7 ± 0.1versus 9.6 ± 0.6) decreased, blood CRH (560 ± 23 versus 455 ± 37 pg/ml), cortisol (27.3 ± 3.4 versus 5 ± 0.5 ng/ml) and OS index (OSI: 2.8 versus 1.7) increased significantly (all P < 0.05) following PIRS. In the oviduct, while levels of CRH (1175 ± 85 versus 881 ± 33 pg/100 mg), cortisol (28.9 ± 1.7 versus14 ± 4 ng/g), CRHR (2.3 ± 0.3 versus 1.0 ± 0.0), FasL (1.31 ± 0.06 versus 1.08 ± 0.05 ng/g), Fas (1.42 ± 0.13 versus 1.0 ± 0.0) and apoptotic cells (19.1 ± 0.5% versus 8.4 ± 0.4%) increased, levels of GR proteins (0.67 ± 0.14 versus 1.0 ± 0.0) and Igf-1 (0.6 ± 0.09 versus 1.0 ± 0.0) and Bdnf (0.73 ± 0.03 versus 1.0 ± 0.0) mRNAs decreased significantly (all P < 0.05 versus control) after PIRS. Mouse embryos expressed GR and Fas at all stages of preimplantation development and embryo OS (GSH/GSSG ratio: 0.88 ± 0.03 versus 1.19 ± 0.13) and annexin-positive cells (blastocysts: 31.4 ± 3.8% versus 10.96 ± 3.4%) increased significantly (P < 0.05) following PIRS. Furthermore, the detrimental effects of PIRS on embryo development and oviductal apoptosis were much reduced in gld mice. Thus, PIRS triggered apoptosis in oviductal cells with activation of the Fas/FasL system. The apoptotic oviductal cells promoted embryo apoptosis with reduced production of IGF-1 and BDNF and increased production of FasL. LIMITATIONS, REASONS FOR CAUTION: Although important, the conclusions were drawn from limited results obtained using a single model in one species and thus they need further verification using other models and/or in other species. Furthermore, as differences in stressed samples were modest and sometimes not significant between gld and wild-type mice whereas differences between control and stressed samples were always present within gld mice, it is deduced that signaling pathways other than the Fas/FasL system might be involved as well in the PIRS-triggered apoptosis of oviducts and embryos. WIDER IMPLICATIONS OF THE FINDINGS: The data are important for studies on the mechanisms by which psychological stress affects female reproduction, as FasL expression has been observed in human oviduct epithelium. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: This study was supported by grants from the National Basic Research Program of China (Nos. 2014CB138503 and 2012CB944403), the China National Natural Science Foundation (Nos. 31272444 and 30972096) and the Animal breeding improvement program of Shandong Province. All authors declare that their participation in the study did not involve factual or potential conflicts of interests.


Asunto(s)
Blastocisto/metabolismo , Desarrollo Embrionario/fisiología , Oviductos/citología , Oviductos/metabolismo , Restricción Física/efectos adversos , Animales , Apoptosis/genética , Apoptosis/fisiología , Blastocisto/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Desarrollo Embrionario/genética , Proteína Ligando Fas/metabolismo , Femenino , Glucocorticoides/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Estrés Oxidativo/fisiología , Embarazo , Preñez , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Psicológico/fisiopatología , Receptor fas/metabolismo
2.
Biol Reprod ; 89(3): 64, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23884643

RESUMEN

This study examined the role of CRH-induced ovarian cell apoptosis in the restraint stress (RS)-induced impairment of oocyte competence. Oocyte percentages of apoptotic cumulus cells (CCs) did not differ between stressed and control mice before in vitro maturation (IVM) but became significantly higher in stressed mice after IVM without serum, growth factor, and hormone. The level of Bcl2 mRNA decreased significantly in mural granulosa cells (MGCs) and ovarian homogenates after RS. Whereas ovarian estradiol, testosterone, and IGF1 decreased, cortisol and progesterone increased significantly following RS. RS increased the level of CRH in serum, ovary, and oocyte while enhancing the expression of CRHR1 in CCs, MGCs, and thecal cells. RS down-regulated ovarian expression of glucocorticoid receptor and brain-derived neurotrophic factor. Furthermore, CRH supplementation to IVM medium impaired oocyte developmental potential while increasing apoptotic CCs, an effect that was completely overcome by addition of the CRHR1 antagonist antalarmin. Results suggest that RS impaired oocyte competence by increasing CRH but not glucocorticoids. Increased CRH initiated a latent apoptotic program in CCs and oocytes during their intraovarian development, which was executed later during IVM to impair oocyte competence. Thus, elevated CRH interacted with increased CRHR1 on thecal cells and MGCs, reducing the production of testosterone, estrogen, and IGF1 while increasing the level of progesterone. The imbalance between estrogen and progesterone and the decreased availability of growth factors triggered apoptosis of MGCs and facilitated CC expression of CRHR1, which interacted with the oocyte-derived CRH later during IVM to induce CC apoptosis and reduce oocyte competence.


Asunto(s)
Apoptosis/fisiología , Hormona Liberadora de Corticotropina/fisiología , Oocitos/fisiología , Ovario/fisiología , Restricción Física/psicología , Estrés Psicológico/fisiopatología , Animales , Apoptosis/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Hormona Liberadora de Corticotropina/farmacología , Femenino , Hormonas Esteroides Gonadales/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Oogénesis/fisiología , Ovario/citología , Ovario/efectos de los fármacos , Estrés Psicológico/etiología
3.
Sci Rep ; 6: 39497, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28000794

RESUMEN

While effects of gestational, neonatal or adolescent stress on psychological alterations in progeny have been extensively studied, much less is known regarding the effects of adult pre-gestational life events on offspring behavior. Although full siblings often display behavioral differences, whether the different parental life events prior to different pregnancies contribute to these behavioral differences among siblings is worth studying. In this study, male and female adult mice were restrained for 60 days before mating with unstressed or stressed partners. F1 offspring were examined for anxiety or mated to generate F2. Both F1 females and males from restrained mothers and/or fathers showed significantly reduced anxiety and serum cortisol and increased mRNA levels of glucocorticoid receptor and brain-derived neurotrophic factor compared to control offspring from unstressed parents. Similar behavioral and molecular changes were also observed in F2 females and males. Although restraint of adolescent mice reduced anxiety in F1 of both sexes, social instability of them increased anxiety predominantly in F1 females. Thus, adult pre-gestational restraint reduced offspring's anxiety across generations; different stressors on parents may cause different phenotypes in offspring; individual behaviors can depend on adult life experiences of parents.


Asunto(s)
Ansiedad/etiología , Depresión/etiología , Estrés Psicológico/genética , Animales , Trastornos de Ansiedad , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Femenino , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Hidrocortisona/sangre , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Fenotipo , Embarazo , Receptores de Glucocorticoides/metabolismo , Restricción Física , Factores Sexuales
4.
PLoS One ; 8(11): e80472, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244689

RESUMEN

It is known that psychological stress affects reproduction in women, but it is unknown whether the effect is by impairing implantation. Although studies suggest that long periods of auditory or restraint stress may inhibit implantation in rats and mice, the exact stage of pregnancy at which stress impairs implantation is unclear. Furthermore, whether stress impairs implantation by decreasing the heparin-binding epidermal growth factor-like growth factor (HB-EGF), estrogen and/or progesterone and whether by acting on embryos or on the uterus need further investigations. In this study, a 24-h restraint stress was initiated at 15:30 of day 3 (regimen 1) or at 07:30 (regimen 2) or 15:30 of day 4 (regimen 3) of pregnancy (vaginal plug  =  day 1) to observe effects of restraint stress applied at different peri-implantation stages on implantation. Among the three regimens, whereas regimens 1 and 3 affected neither term pregnancy nor litter size, regimen 2 reduced both. Further observations indicated that regimen 2 of restraint stress also delayed blastocyst hatching and the attachment reaction, decreased serum concentrations of progesterone and estradiol, and down regulated the expression of HB-EGF in both the endometrium and blastocysts. Taken together, the results suggested that restraint stress inhibited mouse implantation in a temporal window-dependent manner and by impairing blastocyst activation and hatching and uterine receptivity via down-regulating HB-EGF, estrogen and progesterone. Thus, the stress applied within the implantation window impaired implantation by acting on both embryos and the uterus.


Asunto(s)
Implantación del Embrión/fisiología , Estrógenos/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Progesterona/metabolismo , Estrés Fisiológico/fisiología , Animales , Femenino , Masculino , Ratones , Embarazo , Resultado del Embarazo
5.
Cell Reprogram ; 14(5): 436-47, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22908906

RESUMEN

A systematic study was conducted on round spermatids (ROS) injection (ROSI) using the goat model. After ROSI, the oocytes were treated or not with ionomycin (ROSI+I and ROSI-I, respectively) and compared with intracytoplasmic sperm injection (ICSI). After ROSI-I, most oocytes were arrested with premature chromatin condensation and few oocytes formed pronuclei. In contrast, most oocytes formed pronuclei after ROSI+I. Some ROS were observed to form asters that organized a dense microtubule network after ROSI+I, but after ROSI-I, no ROS asters were observed. Whereas most of the oocytes showed Ca(2+) rises and a significant decline in maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities after ROSI+I, no such changes were observed after ROSI-I. Due to the lack of Ca(2+) oscillations after ROSI-I, oocytes were injected with more ROS. Interestingly, different from the results observed in a single ROS injection, injection with four ROS effectively activated oocytes by inducing typical Ca(2+) oscillations. Whereas ROSI+I oocytes and ICSI oocytes both showed extensive microtubule networks, no such a network was observed in parthenogenetic oocytes. Together, the results suggest that goat ROS is not able to trigger intracellular Ca(2+) rises and thus to inhibit MPF and MAPK activities, but artificial activation improved fertilization and development of ROSI goat oocytes. Goat ROS can organize functional microtubular asters in activated oocytes. A ROS-derived factor(s) may be essential for organization of a functional microtubule network to unite pronuclei. Goat centrosome is of paternal origin because both ROS and sperm asters organized an extensive microtubule network after intra-oocyte injection.


Asunto(s)
Blastocisto/citología , Microtúbulos , Oocitos/citología , Interacciones Espermatozoide-Óvulo , Espermátides , Animales , Calcio/metabolismo , Cabras , Ionomicina/farmacología , Masculino , Microscopía Fluorescente , Microtúbulos/efectos de los fármacos , Oocitos/enzimología , Oocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA