Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biol Cell ; 105(11): 501-18, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23870057

RESUMEN

BACKGROUND INFORMATION: During phagocytosis, neutrophils internalise pathogens in a phagosome and produce reactive oxygen species (ROS) by the NADPH oxidase to kill the pathogen. The cytosolic NADPH oxidase subunits p40(phox), p47(phox), p67(phox) and Rac2 translocate to the phagosomal membrane to participate in enzyme activation. The kinetics of this recruitment and the underlying signalling pathways are only partially understood. Anionic phospholipids, phosphatidylserine (PS) and phosphoinositides (PPI) provide an important attachment site for numerous proteins, including several oxidase subunits. RESULTS: We investigated the kinetics of p47(phox) and Rac2 phagosomal membrane recruitment. Both subunits are known to interact with anionic phospholipids; we therefore addressed the role of PS in this recruitment. Phagosomal accumulation of p47(phox) and Rac2 tagged with fluorescent proteins was analysed by videomicroscopy. We used the C2 domain of lactadherin (lactC2) that interacts strongly and specifically with PS to monitor intracellular PS localisation and to decrease PS accessibility. During phagocytosis of opsonised zymosan, p47(phox) and constitutively active Rac2G12V briefly translocated to the phagosomal membrane, whereas ROS production continued for a longer period. However, in the presence of lactC2, Rac2G12V recruitment was inhibited and the kinetics of p47(phox) recruitment and detachment were delayed. A reduced phagosomal ROS production was also observed during the first 7 min following the phagosome closure. CONCLUSIONS: These results suggest that p47(phox) and Rac2 accumulate only transiently at the phagosome at the onset of NADPH activity and detach from the phagosome before the end of ROS production. Furthermore, lactC2, by masking PS, interfered with the phagosomal recruitment of p47(phox) and Rac2 and disturbed NADPH oxidase activity. Thus, PS appears as a modulator of NADPH oxidase activation.


Asunto(s)
Proteínas Mutantes/metabolismo , NADPH Oxidasas/metabolismo , Fagosomas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Sustitución de Aminoácidos , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Humanos , Membranas Intracelulares/metabolismo , Cinética , Proteínas de la Leche/química , Proteínas de la Leche/metabolismo , Modelos Biológicos , Proteínas Opsoninas/metabolismo , Fagocitosis , Unión Proteica , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Zimosan/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína RCA2 de Unión a GTP
2.
Nat Commun ; 15(1): 6927, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138175

RESUMEN

Autophagy is a key lysosomal degradative mechanism allowing a prosurvival response to stresses, especially nutrient starvation. Here we investigate the mechanism of autophagy induction in response to sulfur starvation in Saccharomyces cerevisiae. We found that sulfur deprivation leads to rapid and widespread transcriptional induction of autophagy-related (ATG) genes in ways not seen under nitrogen starvation. This distinctive response depends mainly on the transcription activator of sulfur metabolism Met4. Consistently, Met4 is essential for autophagy under sulfur starvation. Depletion of either cysteine, methionine or SAM induces autophagy flux. However, only SAM depletion can trigger strong transcriptional induction of ATG genes and a fully functional autophagic response. Furthermore, combined inactivation of Met4 and Atg1 causes a dramatic decrease in cell survival under sulfur starvation, highlighting the interplay between sulfur metabolism and autophagy to maintain cell viability. Thus, we describe a pathway of sulfur starvation-induced autophagy depending on Met4 and involving SAM as signaling sulfur metabolite.


Asunto(s)
Autofagia , S-Adenosilmetionina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transducción de Señal , Azufre , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Autofagia/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Azufre/metabolismo , S-Adenosilmetionina/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Metionina/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Quinasas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico
3.
Traffic ; 12(8): 1084-97, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21554509

RESUMEN

The Rab GTPase-activating proteins (GAP) Gyp5p and Gyl1p are involved in the control of polarized exocytosis at the small-bud stage in Saccharomyces cerevisiae. Both Gyp5p and Gyl1p interact with the N-Bin1/Amphiphysin/Rvs167 (BAR) domain protein Rvs167p, but the biological function of this interaction is unclear. We show here that Gyp5p and Gyl1p recruit Rvs167p to the small-bud tip, where it plays a role in polarized exocytosis. In gyp5Δgyl1Δ cells, Rvs167p is not correctly localized to the small-bud tip. Both P473L mutation in the SH3 domain of Rvs167p and deletion of the proline-rich regions of Gyp5p and Gyl1p disrupt the interaction of Rvs167p with Gyp5p and Gyl1p and impair the localization of Rvs167p to the tips of small buds. We provide evidence for the accumulation of secretory vesicles in small buds of rvs167Δ cells and for defective Bgl2p secretion in rvs167Δ cultures enriched in small-budded cells at 13°C, implicating Rvs167p in polarized exocytosis. Moreover, both the accumulation of secretory vesicles in Rvs167p P473L cells cultured at 13°C and secretion defects in cells producing Gyp5p and Gyl1p without proline-rich regions strongly suggest that the function of Rvs167p in exocytosis depends on its ability to interact with Gyp5p and Gyl1p.


Asunto(s)
Exocitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Exocitosis/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Proteínas del Tejido Nervioso/metabolismo , Prolina/genética , Prolina/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab/genética , Dominios Homologos src
4.
J Biol Chem ; 287(41): 34583-95, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22891241

RESUMEN

The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteolisis , Receptores Purinérgicos P2X7/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas de Microfilamentos/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2X7/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
5.
Elife ; 122023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395461

RESUMEN

The ubiquitin-like proteins Atg8/LC3/GABARAP are required for multiple steps of autophagy, such as initiation, cargo recognition and engulfment, vesicle closure and degradation. Most of LC3/GABARAP functions are considered dependent on their post-translational modifications and their association with the autophagosome membrane through a conjugation to a lipid, the phosphatidyl-ethanolamine. Contrarily to mammals, C. elegans possesses single homologs of LC3 and GABARAP families, named LGG-2 and LGG-1. Using site-directed mutagenesis, we inhibited the conjugation of LGG-1 to the autophagosome membrane and generated mutants that express only cytosolic forms, either the precursor or the cleaved protein. LGG-1 is an essential gene for autophagy and development in C. elegans, but we discovered that its functions could be fully achieved independently of its localization to the membrane. This study reveals an essential role for the cleaved form of LGG-1 in autophagy but also in an autophagy-independent embryonic function. Our data question the use of lipidated GABARAP/LC3 as the main marker of autophagic flux and highlight the high plasticity of autophagy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagia , Autofagosomas/metabolismo , Fagocitosis , Mamíferos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
6.
Traffic ; 9(4): 608-22, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18182006

RESUMEN

Gyp5p and Gyl1p are two members of the Ypt/Rab guanosine triphosphatases-activating proteins involved in the control of polarized exocytosis in Saccharomyces cerevisiae. We had previously shown that Gyp5p and Gyl1p colocalize at the sites of polarized growth and belong to the same complex in subcellular fractions enriched in plasma membrane or secretory vesicles. Here, we investigate the interaction between Gyp5p and Gyl1p as well as the mechanism of their localization to the sites of polarized growth. We show that purified recombinant Gyp5p and Gyl1p interact directly in vitro. In vivo, both Gyp5p and Gyl1p are mutually required to concentrate at the sites of polarized growth. Moreover, the localization of Gyp5p and Gyl1p to the sites of polarized growth requires the formins Bni1p and Bnr1p and depends on actin cables. We show that, in a sec6-4 mutant, blocking secretion leads to coaccumulation of Gyp5p and Gyl1p, together with Sec4p. Electron microscopy experiments demonstrate that Gyp5p is associated with secretory vesicles. Altogether, our results indicate that both Gyp5p and Gyl1p access the sites of polarized growth by transport on secretory vesicles. Two polarisome components, Spa2p and Bud6p, are involved in maintaining Gyp5p and Gyl1p colocalized at the sites of polarized growth.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Actinas/metabolismo , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Procesos de Crecimiento Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Secretoras/metabolismo , Vesículas Secretoras/ultraestructura , Tiazolidinas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
7.
Sci Rep ; 10(1): 1698, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015451

RESUMEN

The yeast N-BAR (Bin/Amphiphysin/Rvs167) protein Rvs167 is recruited by the Rab GTPase Activating Proteins (RabGAP) Gyp5 and Gyl1 to the tip of small buds to act in exocytosis. Investigating other N-BAR proteins involved in Gyp5/Gyl1/Rvs167 complexes, we found that Rvs161, an Rvs167 paralog, is absent from the complexes formed at the tip of small buds. Immunoprecipitation and Bimolecular Fluorescence Complementation (BiFC) analysis show that both Rvs167 and Rvs161 interact in vivo with Gvp36, an N-BAR protein. Rvs167 molecules also interact independently of Rvs161 and Gvp36. Rvs167/Rvs167 and Rvs167/Gyp5 interactions predominate over other combinations at the tip of small buds, suggesting that N-BAR lattices enriched in Rvs167 molecules form at these sites. By combining BiFC with markers specific to each organelle, we analyzed systematically in living cells the locations of the BiFC signals generated by combinations of the three N-BAR proteins. We show that the BiFC signals differ according to organelle and cell site, strongly suggesting heterogeneity in the composition of N-BAR protein lattices in vivo. Our results reveal that the organization of N-BAR protein lattices in vivo is complex and are consistent with N-BAR proteins forming various types of dimers and lattices of variable composition.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Exocitosis , Unión Proteica
8.
Diabetes ; 57(3): 555-62, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18057092

RESUMEN

OBJECTIVES: A physiological adaptation to a sugar-rich meal is achieved by increased sugar uptake to match dietary load, resulting from a rapid transient translocation of the fructose/glucose GLUT2 transporter to the brush border membrane (BBM) of enterocytes. The aim of this study was to define the contributors and physiological mechanisms controlling intestinal sugar absorption, focusing on the action of insulin and the contribution of GLUT2-mediated transport. RESEARCH DESIGN AND METHODS: The studies were performed in the human enterocytic colon carcinoma TC7 subclone (Caco-2/TC7) cells and in vivo during hyperinsulinemic-euglycemic clamp experiments in conscious mice. Chronic high-fructose or high-fat diets were used to induce glucose intolerance and insulin resistance in mice. RESULTS AND CONCLUSIONS: In Caco-2/TC7 cells, insulin action diminished the transepithelial transfer of sugar and reduced BBM and basolateral membrane (BLM) GLUT2 levels, demonstrating that insulin can target sugar absorption by controlling the membrane localization of GLUT2 in enterocytes. Similarly, in hyperinsulinemic-euglycemic clamp experiments in sensitive mice, insulin abolished GLUT2 (i.e., the cytochalasin B-sensitive component of fructose absorption), decreased BBM GLUT2, and concomitantly increased intracellular GLUT2. Acute insulin treatment before sugar intake prevented the insertion of GLUT2 into the BBM. Insulin resistance in mice provoked a loss of GLUT2 trafficking, and GLUT2 levels remained permanently high in the BBM and low in the BLM. We propose that, in addition to its peripheral effects, insulin inhibits intestinal sugar absorption to prevent excessive blood glucose excursion after a sugar meal. This protective mechanism is lost in the insulin-resistant state induced by high-fat or high-fructose feeding.


Asunto(s)
Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Resistencia a la Insulina/fisiología , Insulina/farmacología , Animales , Células CACO-2 , Metabolismo de los Hidratos de Carbono , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Enterocitos/ultraestructura , Regulación de la Expresión Génica , Técnica de Clampeo de la Glucosa , Humanos , Ratones , Microvellosidades/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
9.
Traffic ; 8(10): 1385-403, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17725553

RESUMEN

Rab11 and Rab6 guanosine triphosphatases are associated with membranes of the recycling endosomes (REs) and Golgi complex, respectively. Evidence indicates that they sequentially regulate a retrograde transport pathway between these two compartments, suggesting the existence of proteins that must co-ordinate their functions. Here, we report the characterization of two isoforms of a protein, Rab6-interacting protein 1 (R6IP1), originally identified as a Rab6-binding protein. R6IP1 also binds to Rab11A in its GTP-bound conformation. In interphase cells, R6IP1 is targeted to the Golgi in a Rab6-dependent manner but can associate with Rab11-positive compartments when the level of Rab11A is increased within the cells. Fluorescence resonance energy transfer analysis using fluorescence lifetime imaging shows that the overexpression of R6IP1 promotes an interaction between Rab11A and Rab6 in living cells. Accordingly, the REs marked by Rab11 and transferrin receptor are depleted from the cell periphery and accumulate in the pericentriolar area. However, endosomal and Golgi membranes do not appear to fuse with each other. We also show that R6IP1 function is required during metaphase and cytokinesis, two mitotic steps in which a role of Rab6 and Rab11 has been previously documented. We propose that R6IP1 may couple Rab6 and Rab11 function throughout the cell cycle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Ratones , Conejos , Spodoptera/genética , Proteínas de Unión al GTP rab/fisiología
10.
J Cell Sci ; 117(Pt 20): 4757-67, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15331637

RESUMEN

We report here elements for functional characterization of two members of the Saccharomyces cerevisiae Ypt/Rab GTPase activating proteins family (GAP): Gyp5p, a potent GAP in vitro for Ypt1p and Sec4p, and the protein Ymr192wp/APP2 that we propose to rename Gyl1p (GYp like protein). Immunofluorescence experiments showed that Gyp5p and Gyl1p partly colocalize at the bud emergence site, at the bud tip and at the bud neck during cytokinesis. Subcellular fractionation and co-immunoprecipitation experiments showed that Gyp5p and Gyl1p co-fractionate with post-Golgi vesicles and plasma membrane, and belong to the same protein complexes in both localizations. We found by co-immunoprecipitation experiments that a fraction of Gyp5p interacts with Sec4p, a small GTPase involved in exocytosis, and that a fraction of Gyl1p associates at the plasma membrane with the Gyp5p/Sec4p complexes. We showed also that GYP5 genetically interacts with SEC2, which encodes the Sec4p exchange factor. Examination of the gyp5Deltagyl1Delta mutants grown at 13 degrees C revealed a slight growth defect, a secretion defect and an accumulation of secretory vesicles in the small-budded cells. These data suggest that Gyp5p and Gyl1p are involved in control of polarized exocytosis.


Asunto(s)
Polaridad Celular , Exocitosis/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Frío , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/genética , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido , Complejos Multiproteicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , beta-Fructofuranosidasa/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA