Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cerebellum ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467957

RESUMEN

Climbing fibers, connecting the inferior olive and Purkinje cells, form the nervous system's strongest neural connection. These fibers activate after critical events like motor errors or anticipation of rewards, leading to bursts of excitatory postsynaptic potentials (EPSPs) in Purkinje cells. The number of EPSPs is a crucial variable when the brain is learning a new motor skill. Yet, we do not know what determines the number of EPSPs. Here, we measured the effect of nucleo-olivary stimulation on periorbital elicited climbing fiber responses through in-vivo intracellular Purkinje cell recordings in decerebrated ferrets. The results show that while nucleo-olivary stimulation decreased the probability of a response occurring at all, it did not reduce the number of EPSPs. The results suggest that nucleo-olivary stimulation does not influence the number of EPSPs in climbing fiber bursts.

2.
BMC Psychiatry ; 23(1): 920, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066477

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is the most prevalent neuropsychiatric disorder in the world. Currently, the diagnosis is based mainly on interviews, resulting in uncertainties in the clinical assessment. While some neuropsychological tests are used, their specificity and selectivity are low, and more reliable biomarkers are desirable. Previous research indicates that ADHD is associated with morphological changes in the cerebellum, which is essential for motor ability and timing. Here, we compared 29 children diagnosed with ADHD to 96 age-matched controls on prism adaptation, eyeblink conditioning, and timed motor performance in a finger tapping task. Prism adaptation and timing precision in the finger tapping task, but not performance on eyeblink conditioning, differed between the ADHD and control groups, as well as between children with and without Deficits in Attention, Motor control, and Perception (DAMP) - a more severe form of ADHD. The results suggest finger tapping can be used as a cheap, objective, and unbiased biomarker to complement current diagnostic procedures.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Niño , Humanos , Trastorno por Déficit de Atención con Hiperactividad/psicología , Desempeño Psicomotor , Cerebelo , Pruebas Neuropsicológicas
3.
Front Syst Neurosci ; 18: 1462062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229304

RESUMEN

[This corrects the article DOI: 10.3389/fnsys.2023.1168666.].

4.
Front Syst Neurosci ; 17: 1168666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415926

RESUMEN

The cerebellum plays a major role in balance, motor control and sensorimotor integration, but also in cognition, language, and emotional regulation. Several neuropsychiatric disorders such as attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), as well as neurological diseases such as spinocerebellar ataxia type 3 (SCA3) are associated with differences in cerebellar function. Morphological abnormalities in different cerebellar subregions produce distinct behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. The specific contribution of the cerebellum to typical development may therefore involve the optimization of the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains. Here, we review cerebellar structural and functional differences between healthy and patients with ADHD, ASD, and SCA3, and explore how disruption of cerebellar networks affects the neurocognitive functions in these conditions. We discuss how cerebellar computations contribute to performance on cognitive and motor tasks and how cerebellar signals are interfaced with signals from other brain regions during normal and dysfunctional behavior. We conclude that the cerebellum plays a role in many cognitive functions. Still, more clinical studies with the support of neuroimaging are needed to clarify the cerebellum's role in normal and dysfunctional behavior and cognitive functioning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA