Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(9): 4488-4507, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37070157

RESUMEN

Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.


Asunto(s)
Bacterias , ADN Polimerasa Dirigida por ADN , Archaea/enzimología , Bacterias/enzimología , ADN Polimerasa Dirigida por ADN/química , Eucariontes/enzimología , Filogenia , Uracil-ADN Glicosidasa/química
2.
Nucleic Acids Res ; 49(20): 11974-11985, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34751404

RESUMEN

All genetic information in cellular life is stored in DNA copolymers composed of four basic building blocks (ATGC-DNA). In contrast, a group of bacteriophages belonging to families Siphoviridae and Podoviridae has abandoned the usage of one of them, adenine (A), replacing it with 2-aminoadenine (Z). The resulting ZTGC-DNA is more stable than its ATGC-DNA counterpart, owing to the additional hydrogen bond present in the 2-aminoadenine:thymine (Z:T) base pair, while the additional amino group also confers resistance to the host endonucleases. Recently, two classes of replicative proteins found in ZTGC-DNA-containing phages were characterized and one of them, DpoZ from DNA polymerase A (PolA) family, was shown to possess significant Z-vs-A specificity. Here, we present the crystallographic structure of the apo form of DpoZ of vibriophage ϕVC8, composed of the 3'-5' exonuclease and polymerase domains. We captured the enzyme in two conformations that involve the tip of the thumb subdomain and the exonuclease domain. We highlight insertions and mutations characteristic of ϕVC8 DpoZ and its close homologues. Through mutagenesis and functional assays we suggest that the preference of ϕVC8 DpoZ towards Z relies on a polymerase backtracking process, more efficient when the nascent base pair is A:T than when it is Z:T.


Asunto(s)
2-Aminopurina/análogos & derivados , ADN Polimerasa Dirigida por ADN/química , Podoviridae/enzimología , Siphoviridae/enzimología , Proteínas Virales/química , 2-Aminopurina/química , Emparejamiento Base , ADN Viral/química , ADN Polimerasa Dirigida por ADN/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Proteínas Virales/metabolismo
3.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29543809

RESUMEN

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Asunto(s)
Biología Computacional/educación , Biología Computacional/métodos , Investigación/educación , Humanos , Proyectos de Investigación , Estudiantes , Universidades
4.
Science ; 383(6681): 421-426, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271510

RESUMEN

The evolution of new function in living organisms is slow and fundamentally limited by their critical mutation rate. Here, we established a stable orthogonal replication system in Escherichia coli. The orthogonal replicon can carry diverse cargos of at least 16.5 kilobases and is not copied by host polymerases but is selectively copied by an orthogonal DNA polymerase (O-DNAP), which does not copy the genome. We designed mutant O-DNAPs that selectively increase the mutation rate of the orthogonal replicon by two to four orders of magnitude. We demonstrate the utility of our system for accelerated continuous evolution by evolving a 150-fold increase in resistance to tigecycline in 12 days. And, starting from a GFP variant, we evolved a 1000-fold increase in cellular fluorescence in 5 days.


Asunto(s)
Replicación del ADN , Evolución Molecular Dirigida , Proteínas de Escherichia coli , Escherichia coli , Evolución Molecular , Replicón , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Evolución Molecular Dirigida/métodos , Proteínas Fluorescentes Verdes/genética , Tigeciclina/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Fluorescencia
5.
Nat Commun ; 12(1): 4710, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354070

RESUMEN

Cyanophage S-2L is known to profoundly alter the biophysical properties of its DNA by replacing all adenines (A) with 2-aminoadenines (Z), which still pair with thymines but with a triple hydrogen bond. It was recently demonstrated that a homologue of adenylosuccinate synthetase (PurZ) and a dATP triphosphohydrolase (DatZ) are two important pieces of the metabolism of 2-aminoadenine, participating in the synthesis of ZTGC-DNA. Here, we determine that S-2L PurZ can use either dATP or ATP as a source of energy, thereby also depleting the pool of nucleotides in dATP. Furthermore, we identify a conserved gene (mazZ) located between purZ and datZ genes in S-2L and related phage genomes. We show that it encodes a (d)GTP-specific diphosphohydrolase, thereby providing the substrate of PurZ in the 2-aminoadenine synthesis pathway. High-resolution crystal structures of S-2L PurZ and MazZ with their respective substrates provide a rationale for their specificities. The Z-cluster made of these three genes - datZ, mazZ and purZ - was expressed in E. coli, resulting in a successful incorporation of 2-aminoadenine in the bacterial chromosomal and plasmidic DNA. This work opens the possibility to study synthetic organisms containing ZTGC-DNA.


Asunto(s)
ADN Bacteriano/genética , Genes Virales , Siphoviridae/genética , 2-Aminopurina/análogos & derivados , 2-Aminopurina/metabolismo , Adenilosuccinato Sintasa/química , Adenilosuccinato Sintasa/genética , Adenilosuccinato Sintasa/metabolismo , Bacteriófagos , Emparejamiento Base , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Viral , Redes y Vías Metabólicas , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Podoviridae/clasificación , Podoviridae/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Siphoviridae/clasificación , Electricidad Estática , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
PLoS One ; 16(4): e0250610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33914787

RESUMEN

To stop the COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which caused more than 2.5 million deaths to date, new antiviral molecules are urgently needed. The replication of SARS-CoV-2 requires the RNA-dependent RNA polymerase (RdRp), making RdRp an excellent target for antiviral agents. RdRp is a multi-subunit complex composed of 3 viral proteins named nsp7, nsp8 and nsp12 that ensure the ~30 kb RNA genome's transcription and replication. The main strategies employed so far for the overproduction of RdRp consist of expressing and purifying the three subunits separately before assembling the complex in vitro. However, nsp12 shows limited solubility in bacterial expression systems and is often produced in insect cells. Here, we describe an alternative strategy to co-express the full SARS-CoV-2 RdRp in E. coli, using a single plasmid. Characterization of the purified recombinant SARS-CoV-2 RdRp shows that it forms a complex with the expected (nsp7)(nsp8)2(nsp12) stoichiometry. RNA polymerization activity was measured using primer-extension assays showing that the purified enzyme is functional. The purification protocol can be achieved in one single day, surpassing in speed all other published protocols. Our construct is ideally suited for screening RdRp and its variants against very large chemical compounds libraries and has been made available to the scientific community through the Addgene plasmid depository (Addgene ID: 165451).


Asunto(s)
Clonación Molecular , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Escherichia coli/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , COVID-19/virología , Clonación Molecular/métodos , ARN Polimerasa Dependiente de ARN de Coronavirus/aislamiento & purificación , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo
7.
Nat Commun ; 12(1): 2420, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893297

RESUMEN

Bacteriophages have long been known to use modified bases in their DNA to prevent cleavage by the host's restriction endonucleases. Among them, cyanophage S-2L is unique because its genome has all its adenines (A) systematically replaced by 2-aminoadenines (Z). Here, we identify a member of the PrimPol family as the sole possible polymerase of S-2L and we find it can incorporate both A and Z in front of a T. Its crystal structure at 1.5 Å resolution confirms that there is no structural element in the active site that could lead to the rejection of A in front of T. To resolve this contradiction, we show that a nearby gene is a triphosphohydolase specific of dATP (DatZ), that leaves intact all other dNTPs, including dZTP. This explains the absence of A in S-2L genome. Crystal structures of DatZ with various ligands, including one at sub-angstrom resolution, allow to describe its mechanism as a typical two-metal-ion mechanism and to set the stage for its engineering.


Asunto(s)
2-Aminopurina/análogos & derivados , Adenina/química , Bacteriófagos/genética , Cianobacterias/virología , ADN Viral/química , Synechococcus/virología , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenina/metabolismo , Bacteriófagos/metabolismo , Sitios de Unión/genética , Biocatálisis , ADN Primasa/química , ADN Primasa/genética , ADN Primasa/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Dominios Proteicos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA