Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Calcium ; 60(6): 384-395, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27659111

RESUMEN

GRIN2A mutations are frequent in melanoma tumours but their role in disease is not well understood. GRIN2A encodes a modulatory subunit of the N-methyl-d-aspartate receptor (NMDAR). We hypothesized that certain GRIN2A mutations increase NMDAR function and support melanoma growth through oncogenic effects. This hypothesis was tested using 19 low-passage melanoma cell lines, four of which carried novel missense mutations in GRIN2A that we previously reported. We examined NMDAR expression, function of a calcium ion (Ca2+) channel and its contribution to cell growth using pharmacological modulators; findings were correlated with the presence or absence of GRIN2A mutations. We found that NMDAR expression was low in all melanoma cell lines, independent of GRIN2A mutations. In keeping with this, NMDAR-mediated Ca2+ influx and its contribution to cell proliferation were weak in most cell lines. However, certain GRIN2A mutations and culture media with lower glutamate levels enhanced NMDAR effects on cell growth and invasion. The main finding was that G762E was associated with higher glutamate-mediated Ca2+ influx and stronger NMDAR contribution to cell proliferation, compared with wild-type GRIN2A and other GRIN2A mutations. The pro-invasive phenotype of mutated cell lines was increased in culture medium containing less glutamate, implying environmental modulation of mutation effects. In conclusion, NMDAR ion channel function is low in cultured melanoma cells but supports cell proliferation and invasion. Selected GRIN2A mutations, such as G762E, are associated with oncogenic consequences that can be modulated by extracellular glutamate. Primary cultures may be better suited to determine the role of the NMDAR in melanoma in vivo.


Asunto(s)
Ácido Glutámico/farmacología , Melanoma/genética , Receptores de N-Metil-D-Aspartato/genética , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Melanoma/patología , Mutación , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad
2.
Front Oncol ; 3: 333, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24455489

RESUMEN

Previous whole-exome sequencing has demonstrated that melanoma tumors harbor mutations in the GRIN2A gene. GRIN2A encodes the regulatory GluN2A subunit of the glutamate-gated N-methyl-d-aspartate receptor (NMDAR), involvement of which in melanoma remains undefined. Here, we sequenced coding exons of GRIN2A in 19 low-passage melanoma cell lines derived from patients with metastatic melanoma. Potential mutation impact was evaluated in silico, including within the GluN2A crystal structure, and clinical correlations were sought. We found that of 19 metastatic melanoma tumors, four (21%) carried five missense mutations in the evolutionarily conserved domains of GRIN2A; two were previously reported. Melanoma cells that carried these mutations were treatment-naïve. Sorting intolerant from tolerant analysis predicted that S349F, G762E, and P1132L would disrupt protein function. When modeled into the crystal structure of GluN2A, G762E was seen to potentially alter GluN1-GluN2A interactions and ligand binding, implying disruption to NMDAR functionality. Patients whose tumors carried non-synonymous GRIN2A mutations had faster disease progression and shorter overall survival (P < 0.05). This was in contrast to the BRAF V600E mutation, found in 58% of tumors but showing no correlation with clinical outcome (P = 0.963). Although numbers of patients in this study are small, and firm conclusions about the association between GRIN2A mutations and poor clinical outcome cannot be drawn, our results highlight the high prevalence of GRIN2A mutations in metastatic melanoma and suggest for the first time that mutated NMDARs impact melanoma progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA