Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Oecologia ; 200(1-2): 159-168, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36053351

RESUMEN

The size of organisms may result from various, sometimes antagonistic forces operating on distinct traits, within an evolutionary framework that may also be constraining. Morphological allometry, referring to the way trait size scales with body size, has been shown to reflect ecological adaptation to the mean size of the resource exploited. We examined the allometric relationships between rostrum and body size among four insect (Curculio spp.) specialists of oak acorns. In all four species, weevil females drill a hole with their rostrum prior depositing one or a few eggs inside the seed. The four weevil species, that coexist on the same individual trees, displayed partitioned egg-laying periods in the year, thereby encountering acorns of different size and maturation stage. We found marked differences in the allometric slope among females: species laying eggs late in the season had a steeper slope, leading to increasingly longer rostrum relative to body length, along with the mean size of the growing acorns. Females of the smallest species had the longest oviposition period and also had the steepest slope, which provided them with the most variable rostrum length, thereby matching the variable size of the resource through time. Our work highlights the need to consider not only the average size but also the degree of variability in resource size to understand the adaptive value of allometric relationships.


Asunto(s)
Quercus , Gorgojos , Animales , Evolución Biológica , Tamaño Corporal , Femenino , Insectos , Gorgojos/anatomía & histología
2.
Oecologia ; 189(1): 55-68, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30470888

RESUMEN

According to the principle of allocation, trade-offs are inevitable when resources allocated to one biological function are no longer available for other functions. Growth, and to a lesser extent, immunity are energetically costly functions that may compete with allocation to reproductive success and survival. However, whether high allocation to growth impairs immune system development during the growing period or immune system performance during adulthood is currently unknown in wild mammals. Using three roe deer (Capreolus capreolus) populations experiencing contrasting environmental conditions, we tested for potential costs of growth on immune phenotype over both the short-term (during growth), and the long-term (during adulthood) over the course of an individuals' life. We investigated potential costs on a set of 12 immune traits that reflect both innate and adaptive responses, and compared them between sexes and populations. Although fast growth tended to be associated with low levels of some humoral traits (globulins) during the growing period and some cellular immune traits (i.e. eosinophil and neutrophil counts) during adulthood, evidence for a trade-off between growth and other immune components was limited. Unexpectedly, no detectable growth costs on immunity were found in females from the population experiencing the least favourable environment. We discuss our findings in the light of the complex interplay between resource allocation strategies among reproduction, maintenance and immunity, in relation to local environmental conditions experienced by roe deer.


Asunto(s)
Ciervos , Herbivoria , Adulto , Animales , Femenino , Fenotipo , Reproducción
3.
Sci Rep ; 7(1): 13700, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057949

RESUMEN

In animals, physiological mechanisms underlying reproductive and actuarial senescence remain poorly understood. Immunosenescence, the decline in the ability to display an efficient immune response with increasing age, is likely to influence both reproductive and actuarial senescence through increased risk of disease. Evidence for such a link has been reported from laboratory animal models but has been poorly investigated in the wild, where variation in resource acquisitions usually drives life-history trade-offs. We investigated immunosenescence patterns over 7 years in both sexes of two contrasting roe deer populations (Capreolus capreolus). We first measured twelve immune markers to obtain a thorough identification of innate and adaptive components of immunity and assessed, from the same individuals, the age-dependent variation observed in parasitic infections. Although the level of innate traits was maintained at old age, the functional innate immune traits declined with increasing age in one of two populations. In both populations, the production of inflammatory markers increased with advancing age. Finally, the adaptive response declined in late adulthood. The increasing parasite burden with age we reported suggests the effective existence of immunosenescence. Age-specific patterns differed between populations but not between sexes, which indicate that habitat quality could shape age-dependent immune phenotype in the wild.


Asunto(s)
Ciervos/inmunología , Inmunosenescencia , Inmunidad Adaptativa/fisiología , Animales , Femenino , Inmunidad Innata/fisiología , Inmunosenescencia/fisiología , Inflamación/inmunología , Masculino , Enfermedades Parasitarias en Animales/inmunología , Caracteres Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA