Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Nature ; 619(7970): 585-594, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468583

RESUMEN

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Asunto(s)
Perfilación de la Expresión Génica , Enfermedades Renales , Riñón , Análisis de la Célula Individual , Transcriptoma , Humanos , Núcleo Celular/genética , Riñón/citología , Riñón/lesiones , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Transcriptoma/genética , Estudios de Casos y Controles , Imagenología Tridimensional
2.
J Am Soc Nephrol ; 34(2): 220-240, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283811

RESUMEN

BACKGROUND: Translation shutdown is a hallmark of late-phase, sepsis-induced kidney injury. Methods for controlling protein synthesis in the kidney are limited. Reversing translation shutdown requires dephosphorylation of the eukaryotic initiation factor 2 (eIF2) subunit eIF2 α ; this is mediated by a key regulatory molecule, protein phosphatase 1 regulatory subunit 15A (Ppp1r15a), also known as GADD34. METHODS: To study protein synthesis in the kidney in a murine endotoxemia model and investigate the feasibility of translation control in vivo by boosting the protein expression of Ppp1r15a, we combined multiple tools, including ribosome profiling (Ribo-seq), proteomics, polyribosome profiling, and antisense oligonucleotides, and a newly generated Ppp1r15a knock-in mouse model and multiple mutant cell lines. RESULTS: We report that translation shutdown in established sepsis-induced kidney injury is brought about by excessive eIF2 α phosphorylation and sustained by blunted expression of the counter-regulatory phosphatase Ppp1r15a. We determined the blunted Ppp1r15a expression persists because of the presence of an upstream open reading frame (uORF). Overcoming this barrier with genetic and antisense oligonucleotide approaches enabled the overexpression of Ppp1r15a, which salvaged translation and improved kidney function in an endotoxemia model. Loss of this uORF also had broad effects on the composition and phosphorylation status of the immunopeptidome-peptides associated with the MHC-that extended beyond the eIF2 α axis. CONCLUSIONS: We found Ppp1r15a is translationally repressed during late-phase sepsis because of the existence of an uORF, which is a prime therapeutic candidate for this strategic rescue of translation in late-phase sepsis. The ability to accurately control translation dynamics during sepsis may offer new paths for the development of therapies at codon-level precision. PODCAST: This article contains a podcast at.


Asunto(s)
Lesión Renal Aguda , Endotoxemia , Animales , Ratones , Biosíntesis de Proteínas , Sistemas de Lectura Abierta , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Endotoxemia/complicaciones , Modelos Animales de Enfermedad , Lesión Renal Aguda/genética , Proteína Fosfatasa 1
3.
Lab Invest ; 103(6): 100104, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36867975

RESUMEN

The human kidney is a complex organ with various cell types that are intricately organized to perform key physiological functions and maintain homeostasis. New imaging modalities, such as mesoscale and highly multiplexed fluorescence microscopy, are increasingly being applied to human kidney tissue to create single-cell resolution data sets that are both spatially large and multidimensional. These single-cell resolution high-content imaging data sets have great potential to uncover the complex spatial organization and cellular makeup of the human kidney. Tissue cytometry is a novel approach used for the quantitative analysis of imaging data; however, the scale and complexity of such data sets pose unique challenges for processing and analysis. We have developed the Volumetric Tissue Exploration and Analysis (VTEA) software, a unique tool that integrates image processing, segmentation, and interactive cytometry analysis into a single framework on desktop computers. Supported by an extensible and open-source framework, VTEA's integrated pipeline now includes enhanced analytical tools, such as machine learning, data visualization, and neighborhood analyses, for hyperdimensional large-scale imaging data sets. These novel capabilities enable the analysis of mesoscale 2- and 3-dimensional multiplexed human kidney imaging data sets (such as co-detection by indexing and 3-dimensional confocal multiplexed fluorescence imaging). We demonstrate the utility of this approach in identifying cell subtypes in the kidney on the basis of labels, spatial association, and their microenvironment or neighborhood membership. VTEA provides an integrated and intuitive approach to decipher the cellular and spatial complexity of the human kidney and complements other transcriptomics and epigenetic efforts to define the landscape of kidney cell types.


Asunto(s)
Imagenología Tridimensional , Riñón , Humanos , Riñón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Aprendizaje Automático
4.
Am J Physiol Renal Physiol ; 323(2): F212-F226, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759740

RESUMEN

Sepsis is a significant cause of mortality in hospitalized patients. Concomitant development of acute kidney injury (AKI) increases sepsis mortality through unclear mechanisms. Although electrolyte disturbances and toxic metabolite buildup during AKI could be important, it is possible that the kidney produces a protective molecule lost during sepsis with AKI. We have previously demonstrated that systemic Tamm-Horsfall protein (THP; uromodulin), a kidney-derived protein with immunomodulatory properties, falls in AKI. Using a mouse sepsis model without severe kidney injury, we showed that the kidney increases circulating THP by enhancing the basolateral release of THP from medullary thick ascending limb cells. In patients with sepsis, changes in circulating THP were positively associated with a critical illness. THP was also found de novo in injured lungs. Genetic ablation of THP in mice led to increased mortality and bacterial burden during sepsis. Consistent with the increased bacterial burden, the presence of THP in vitro and in vivo led macrophages and monocytes to upregulate a transcriptional program promoting cell migration, phagocytosis, and chemotaxis, and treatment of macrophages with purified THP increases phagocytosis. Rescue of septic THP-/- mice with exogenous systemic THP improved survival. Together, these findings suggest that through releasing THP, the kidney modulates the immune response in sepsis by enhancing mononuclear phagocyte function, and systemic THP has therapeutic potential in sepsis.NEW & NOTEWORTHY Specific therapies to improve outcomes in sepsis with kidney injury have been limited by an unclear understanding of how kidney injury increases sepsis mortality. Here, we identified Tamm-Horsfall protein, known to protect in ischemic acute kidney injury, as protective in preclinical sepsis models. Tamm-Horsfall protein also increased in clinical sepsis without severe kidney injury and concentrated in injured organs. Further study could lead to novel sepsis therapeutics.


Asunto(s)
Lesión Renal Aguda , Sepsis , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Animales , Modelos Animales de Enfermedad , Riñón/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Uromodulina/genética , Uromodulina/metabolismo
5.
Curr Opin Nephrol Hypertens ; 31(2): 160-167, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982521

RESUMEN

PURPOSE OF REVIEW: Traditional histopathology of the kidney biopsy specimen has been an essential and successful tool for the diagnosis and staging of kidney diseases. However, it is likely that the full potential of the kidney biopsy has not been tapped so far. Indeed, there is now a concerted worldwide effort to interrogate kidney biopsy samples at the cellular and molecular levels with unprecedented rigor and depth. This review examines these novel approaches to study kidney biopsy specimens and highlights their potential to refine our understanding of the pathophysiology of kidney disease and lead to precision-based diagnosis and therapy. RECENT FINDINGS: Several consortia are now active at studying kidney biopsy samples from various patient cohorts with state-of-the art cellular and molecular techniques. These include advanced imaging approaches as well as deep molecular interrogation with tools such as epigenetics, transcriptomics, proteomics and metabolomics. The emphasis throughout is on rigor, reproducibility and quality control. SUMMARY: Although these techniques to study kidney biopsies are complementary, each on its own can yield novel ways to define and classify kidney disease. Therefore, great efforts are needed in order to generate an integrated output that can propel the diagnosis and treatment of kidney disease into the realm of precision medicine.


Asunto(s)
Enfermedades Renales , Biopsia/métodos , Femenino , Humanos , Riñón/patología , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Enfermedades Renales/terapia , Masculino , Medicina de Precisión , Reproducibilidad de los Resultados
6.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197228

RESUMEN

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Asunto(s)
Guías como Asunto , Riñón/patología , Medicina de Precisión , Biopsia , Humanos , Reproducibilidad de los Resultados
7.
Am J Physiol Renal Physiol ; 320(5): F671-F682, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33682441

RESUMEN

The Indiana O'Brien Center for Advanced Microscopic Analysis is a National Institutes of Health (NIH) P30-funded research center dedicated to the development and dissemination of advanced methods of optical microscopy to support renal researchers throughout the world. The Indiana O'Brien Center was founded in 2002 as an NIH P-50 project with the original goal of helping researchers realize the potential of intravital multiphoton microscopy as a tool for understanding renal physiology and pathophysiology. The center has since expanded into the development and implementation of large-scale, high-content tissue cytometry. The advanced imaging capabilities of the center are made available to renal researchers worldwide via collaborations and a unique fellowship program. Center outreach is accomplished through an enrichment core that oversees a seminar series, an informational website, and a biennial workshop featuring hands-on training from members of the Indiana O'Brien Center and imaging experts from around the world.


Asunto(s)
Academias e Institutos , Investigación Biomédica , Microscopía Intravital , Enfermedades Renales/patología , Riñón/patología , Microscopía de Fluorescencia por Excitación Multifotónica , Nefrología , Animales , Difusión de Innovaciones , Humanos , Interpretación de Imagen Asistida por Computador , Indiana , Cooperación Internacional , Riñón/fisiopatología , Enfermedades Renales/fisiopatología , Comunicación Académica
8.
Lab Invest ; 101(5): 661-676, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33408350

RESUMEN

The advent of personalized medicine has driven the development of novel approaches for obtaining detailed cellular and molecular information from clinical tissue samples. Tissue cytometry is a promising new technique that can be used to enumerate and characterize each cell in a tissue and, unlike flow cytometry and other single-cell techniques, does so in the context of the intact tissue, preserving spatial information that is frequently crucial to understanding a cell's physiology, function, and behavior. However, the wide-scale adoption of tissue cytometry as a research tool has been limited by the fact that published examples utilize specialized techniques that are beyond the capabilities of most laboratories. Here we describe a complete and accessible pipeline, including methods of sample preparation, microscopy, image analysis, and data analysis for large-scale three-dimensional tissue cytometry of human kidney tissues. In this workflow, multiphoton microscopy of unlabeled tissue is first conducted to collect autofluorescence and second-harmonic images. The tissue is then labeled with eight fluorescent probes, and imaged using spectral confocal microscopy. The raw 16-channel images are spectrally deconvolved into 8-channel images, and analyzed using the Volumetric Tissue Exploration and Analysis (VTEA) software developed by our group. We applied this workflow to analyze millimeter-scale tissue samples obtained from human nephrectomies and from renal biopsies from individuals diagnosed with diabetic nephropathy, generating a quantitative census of tens of thousands of cells in each. Such analyses can provide useful insights that can be linked to the biology or pathology of kidney disease. The approach utilizes common laboratory techniques, is compatible with most commercially-available confocal microscope systems and all image and data analysis is conducted using the VTEA image analysis software, which is available as a plug-in for ImageJ.


Asunto(s)
Técnicas Citológicas , Imagenología Tridimensional , Riñón/citología , Microscopía de Fluorescencia por Excitación Multifotónica , Programas Informáticos , Colorantes Fluorescentes , Humanos , Microscopía Confocal
9.
Kidney Int ; 99(3): 598-608, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159963

RESUMEN

Fibroblast Growth Factor 23 (FGF23) is a bone-derived hormone that reduces kidney phosphate reabsorption and 1,25(OH)2 vitamin D synthesis via its required co-receptor alpha-Klotho. To identify novel genes that could serve as targets to control FGF23-mediated mineral metabolism, gene array and single-cell RNA sequencing were performed in wild type mouse kidneys. Gene array demonstrated that heparin-binding EGF-like growth factor (HBEGF) was significantly up-regulated following one-hour FGF23 treatment of wild type mice. Mice injected with HBEGF had phenotypes consistent with partial FGF23-mimetic activity including robust induction of Egr1, and increased Cyp24a1 mRNAs. Single cell RNA sequencing showed overlapping HBEGF and EGF-receptor expression mostly in the proximal tubule, and alpha-Klotho expression in proximal and distal tubule segments. In alpha-Klotho-null mice devoid of canonical FGF23 signaling, HBEGF injections significantly increased Egr1 and Cyp24a1 with correction of basally elevated Cyp27b1. Additionally, mice placed on a phosphate deficient diet to suppress FGF23 had endogenously increased Cyp27b1 mRNA, which was rescued in mice receiving HBEGF. In HEK293 cells with stable alpha-Klotho expression, FGF23 and HBEGF increased CYP24A1 mRNA expression. HBEGF, but not FGF23 bioactivity was blocked with EGF-receptor inhibition. Thus, our findings support that the paracrine/autocrine factor HBEGF could play novel roles in controlling genes downstream of FGF23 via targeting common signaling pathways.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Vitamina D , Animales , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Glucuronidasa/genética , Células HEK293 , Humanos , Riñón , Ratones , Minerales , Fosfatos
10.
Kidney Int ; 99(3): 498-510, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33637194

RESUMEN

Chronic kidney disease (CKD) and acute kidney injury (AKI) are common, heterogeneous, and morbid diseases. Mechanistic characterization of CKD and AKI in patients may facilitate a precision-medicine approach to prevention, diagnosis, and treatment. The Kidney Precision Medicine Project aims to ethically and safely obtain kidney biopsies from participants with CKD or AKI, create a reference kidney atlas, and characterize disease subgroups to stratify patients based on molecular features of disease, clinical characteristics, and associated outcomes. An additional aim is to identify critical cells, pathways, and targets for novel therapies and preventive strategies. This project is a multicenter prospective cohort study of adults with CKD or AKI who undergo a protocol kidney biopsy for research purposes. This investigation focuses on kidney diseases that are most prevalent and therefore substantially burden the public health, including CKD attributed to diabetes or hypertension and AKI attributed to ischemic and toxic injuries. Reference kidney tissues (for example, living-donor kidney biopsies) will also be evaluated. Traditional and digital pathology will be combined with transcriptomic, proteomic, and metabolomic analysis of the kidney tissue as well as deep clinical phenotyping for supervised and unsupervised subgroup analysis and systems biology analysis. Participants will be followed prospectively for 10 years to ascertain clinical outcomes. Cell types, locations, and functions will be characterized in health and disease in an open, searchable, online kidney tissue atlas. All data from the Kidney Precision Medicine Project will be made readily available for broad use by scientists, clinicians, and patients.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/terapia , Adulto , Humanos , Riñón , Medicina de Precisión , Estudios Prospectivos , Proteómica , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia
11.
Nephrol Dial Transplant ; 37(1): 72-84, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33537765

RESUMEN

BACKGROUND: Idiopathic nodular mesangial sclerosis, also called idiopathic nodular glomerulosclerosis (ING), is a rare clinical entity with an unclear pathogenesis. The hallmark of this disease is the presence of nodular mesangial sclerosis on histology without clinical evidence of diabetes mellitus or other predisposing diagnoses. To achieve insights into its pathogenesis, we queried the clinical, histopathologic and transcriptomic features of ING and nodular diabetic nephropathy (DN). METHODS: All renal biopsy reports accessioned at Indiana University Health from 2001 to 2016 were reviewed to identify 48 ING cases. Clinical and histopathologic features were compared between individuals with ING and DN (n = 751). Glomeruli of ING (n = 5), DN (n = 18) and reference (REF) nephrectomy (n = 9) samples were isolated by laser microdissection and RNA was sequenced. Immunohistochemistry of proline-rich 36 (PRR36) protein was performed. RESULTS: ING subjects were frequently hypertensive (95.8%) with a smoking history (66.7%). ING subjects were older, had lower proteinuria and had less hyaline arteriolosclerosis than DN subjects. Butanoate metabolism was an enriched pathway in ING samples compared with either REF or DN samples. The top differentially expressed gene, PRR36, had increased expression in glomeruli 248-fold [false discovery rate (FDR) P = 5.93 × 10-6] compared with the REF and increased 109-fold (FDR P = 1.85 × 10-6) compared with DN samples. Immunohistochemistry revealed a reduced proportion of cells with perinuclear reaction in ING samples as compared to DN. CONCLUSIONS: Despite similar clinical and histopathologic characteristics in ING and DN, the uncovered transcriptomic signature suggests that ING has distinct molecular features from nodular DN. Further study is warranted to understand these relationships.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Síndrome Nefrótico , Diabetes Mellitus/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Humanos , Glomérulos Renales/patología , Síndrome Nefrótico/patología , Proteinuria/patología , Esclerosis/patología
12.
Am J Kidney Dis ; 76(3): 350-360, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32336487

RESUMEN

RATIONALE & OBJECTIVE: The use of kidney histopathology for predicting kidney failure is not established. We hypothesized that the use of histopathologic features of kidney biopsy specimens would improve prediction of clinical outcomes made using demographic and clinical variables alone. STUDY DESIGN: Retrospective cohort study and development of a clinical prediction model. SETTING & PARTICIPANTS: All 2,720 individuals from the Biopsy Biobank Cohort of Indiana who underwent kidney biopsy between 2002 and 2015 and had at least 2 years of follow-up. NEW PREDICTORS & ESTABLISHED PREDICTORS: Demographic variables, comorbid conditions, baseline clinical characteristics, and histopathologic features. OUTCOMES: Time to kidney failure, defined as sustained estimated glomerular filtration rate ≤ 10mL/min/1.73m2. ANALYTICAL APPROACH: Multivariable Cox regression model with internal validation by bootstrapping. Models including clinical and demographic variables were fit with the addition of histopathologic features. To assess the impact of adding a histopathology variable, the amount of variance explained (r2) and the C index were calculated. The impact on prediction was assessed by calculating the net reclassification index for each histopathologic variable and for all combined. RESULTS: Median follow-up was 3.1 years. Within 5 years of biopsy, 411 (15.1%) patients developed kidney failure. Multivariable analyses including demographic and clinical variables revealed that severe glomerular obsolescence (adjusted HR, 2.03; 95% CI, 1.51-2.03), severe interstitial fibrosis and tubular atrophy (adjusted HR, 1.99; 95% CI, 1.52-2.59), and severe arteriolar hyalinosis (adjusted HR, 1.53; 95% CI, 1.14-2.05) were independently associated with the primary outcome. The addition of all histopathologic variables to the clinical model yielded a net reclassification index for kidney failure of 5.1% (P < 0.001) with a full model C statistic of 0.915. Analyses addressing the competing risk for death, optimism, or shrinkage did not significantly change the results. LIMITATIONS: Selection bias from the use of clinically indicated biopsies and exclusion of patients with less than 2 years of follow-up, as well as reliance on surrogate indicators of kidney failure onset. CONCLUSIONS: A model incorporating histopathologic features from kidney biopsy specimens improved prediction of kidney failure and may be valuable clinically. Future studies will be needed to understand whether even more detailed characterization of kidney tissue may further improve prognostication about the future trajectory of estimated glomerular filtration rate.


Asunto(s)
Riñón/patología , Insuficiencia Renal/patología , Adolescente , Adulto , Biopsia , Comorbilidad , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Proteinuria/epidemiología , Proteinuria/etiología , Insuficiencia Renal/complicaciones , Insuficiencia Renal/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Sensibilidad y Especificidad , Resultado del Tratamiento , Adulto Joven
13.
Opt Lett ; 44(16): 3928-3931, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415514

RESUMEN

Fluorescence lifetime imaging microscopy (FLIM) provides additional contrast for fluorophores with overlapping emission spectra. The phasor approach to FLIM greatly reduces the complexity of FLIM analysis and enables a useful image segmentation technique by selecting adjacent phasor points and labeling their corresponding pixels with different colors. This phasor labeling process, however, is empirical and could lead to biased results. In this Letter, we present a novel and unbiased approach to automate the phasor labeling process using an unsupervised machine learning technique, i.e., K-means clustering. In addition, we provide an open-source, user-friendly program that enables users to easily employ the proposed approach. We demonstrate successful image segmentation on 2D and 3D FLIM images of fixed cells and living animals acquired with two different FLIM systems. Finally, we evaluate how different parameters affect the segmentation result and provide a guideline for users to achieve optimal performance.

14.
J Am Soc Nephrol ; 29(1): 104-117, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29018138

RESUMEN

Preconditioning with a low dose of endotoxin confers unparalleled protection against otherwise lethal models of sepsis. The mechanisms of preconditioning have been investigated extensively in isolated immune cells such as macrophages. However, the role of tissue in mediating the protective response generated by preconditioning remains unknown. Here, using the kidney as a model organ, we investigated cell type-specific responses to preconditioning. Compared with preadministration of vehicle, endotoxin preconditioning in the cecal ligation and puncture mouse model of sepsis led to significantly enhanced survival and reduced bacterial load in several organs. Furthermore, endotoxin preconditioning reduced serum levels of proinflammatory cytokines, upregulated molecular pathways involved in phagocytosis, and prevented the renal function decline and injury induced in mice by a toxic dose of endotoxin. The protective phenotype involved the clustering of macrophages around S1 segments of proximal tubules, and full renal protection required both macrophages and renal tubular cells. Using unbiased S1 transcriptomic and tissue metabolomic approaches, we identified multiple protective molecules that were operative in preconditioned animals, including molecules involved in antibacterial defense, redox balance, and tissue healing. We conclude that preconditioning reprograms macrophages and tubules to generate a protective environment, in which tissue health is preserved and immunity is controlled yet effective. Endotoxin preconditioning can thus be used as a discovery platform, and understanding the role and participation of both tissue and macrophages will help refine targeted therapies for sepsis.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/fisiopatología , Lipopolisacáridos/farmacología , Macrófagos/fisiología , Sepsis/prevención & control , Animales , Arginina/metabolismo , Carga Bacteriana , Quimera , Citocinas/sangre , Modelos Animales de Enfermedad , Masculino , Metaboloma , Ratones , Ratones Noqueados , Fagocitosis , Sepsis/sangre , Succinatos/metabolismo , Tasa de Supervivencia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Transcriptoma
15.
J Am Soc Nephrol ; 29(3): 841-856, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29180395

RESUMEN

Tamm-Horsfall protein (THP), also known as uromodulin, is a kidney-specific protein produced by cells of the thick ascending limb of the loop of Henle. Although predominantly secreted apically into the urine, where it becomes highly polymerized, THP is also released basolaterally, toward the interstitium and circulation, to inhibit tubular inflammatory signaling. Whether, through this latter route, THP can also regulate the function of renal interstitial mononuclear phagocytes (MPCs) remains unclear, however. Here, we show that THP is primarily in a monomeric form in human serum. Compared with wild-type mice, THP-/- mice had markedly fewer MPCs in the kidney. A nonpolymerizing, truncated form of THP stimulated the proliferation of human macrophage cells in culture and partially restored the number of kidney MPCs when administered to THP-/- mice. Furthermore, resident renal MPCs had impaired phagocytic activity in the absence of THP. After ischemia-reperfusion injury, THP-/- mice, compared with wild-type mice, exhibited aggravated injury and an impaired transition of renal macrophages toward an M2 healing phenotype. However, treatment of THP-/- mice with truncated THP after ischemia-reperfusion injury mitigated the worsening of AKI. Taken together, our data suggest that interstitial THP positively regulates mononuclear phagocyte number, plasticity, and phagocytic activity. In addition to the effect of THP on the epithelium and granulopoiesis, this new immunomodulatory role could explain the protection conferred by THP during AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Fagocitos/efectos de los fármacos , Fagocitos/fisiología , Uromodulina/genética , Uromodulina/metabolismo , Lesión Renal Aguda/etiología , Animales , Plasticidad de la Célula/genética , Proliferación Celular/efectos de los fármacos , Activación Enzimática , Humanos , Riñón/patología , Ratones , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/complicaciones , Uromodulina/química , Uromodulina/farmacología , Uromodulina/uso terapéutico
16.
Methods ; 128: 33-39, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28410977

RESUMEN

Two-photon intravital microscopy is a powerful tool that allows the examination of dynamic cellular processes in the live animal with unprecedented resolution. Indeed, it offers the ability to address unique biological questions that may not be solved by other means. While two-photon intravital microscopy has been successfully applied to study many organs, the kidney presents its own unique challenges that need to be overcome in order to optimize and validate imaging data. For kidney imaging, the complexity of renal architecture and salient autofluorescence merit special considerations as these elements directly impact image acquisition and data interpretation. Here, using illustrative cases, we provide practical guides and discuss issues that may arise during two-photon live imaging of the rodent kidney.


Asunto(s)
Colorantes Fluorescentes , Microscopía Intravital/métodos , Riñón/diagnóstico por imagen , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Imagen de Lapso de Tiempo/métodos , Animales , Riñón/citología , Riñón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
17.
J Am Soc Nephrol ; 28(8): 2420-2430, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28250053

RESUMEN

In the live animal, tissue autofluorescence arises from a number of biologically important metabolites, such as the reduced form of nicotinamide adenine dinucleotide. Because autofluorescence changes with metabolic state, it can be harnessed as a label-free imaging tool with which to study metabolism in vivo Here, we used the combination of intravital two-photon microscopy and frequency-domain fluorescence lifetime imaging microscopy (FLIM) to map cell-specific metabolic signatures in the kidneys of live animals. The FLIM images are analyzed using the phasor approach, which requires no prior knowledge of metabolite species and can provide unbiased metabolic fingerprints for each pixel of the lifetime image. Intravital FLIM revealed the metabolic signatures of S1 and S2 proximal tubules to be distinct and resolvable at the subcellular level. Notably, S1 and distal tubules exhibited similar metabolic profiles despite apparent differences in morphology and autofluorescence emission with traditional two-photon microscopy. Time-lapse imaging revealed dynamic changes in the metabolic profiles of the interstitium, urinary lumen, and glomerulus-areas that are not resolved by traditional intensity-based two-photon microscopy. Finally, using a model of endotoxemia, we present examples of the way in which intravital FLIM can be applied to study kidney diseases and metabolism. In conclusion, intravital FLIM of intrinsic metabolites is a bias-free approach with which to characterize and monitor metabolism in vivo, and offers the unique opportunity to uncover dynamic metabolic changes in living animals with subcellular resolution.


Asunto(s)
Microscopía Intravital , Riñón/citología , Riñón/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica , Animales , Riñón/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Int J Mol Sci ; 18(3)2017 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-28335481

RESUMEN

Colistin sulfate (polymixin E) is an antibiotic prescribed with increasing frequency for severe Gram-negative bacterial infections. As nephrotoxicity is a common side effect, the discovery of pharmacogenomic markers associated with toxicity would benefit the utility of this drug. Our objective was to identify genetic markers of colistin cytotoxicity that were also associated with expression of key proteins using an unbiased, whole genome approach and further evaluate the functional significance in renal cell lines. To this end, we employed International HapMap lymphoblastoid cell lines (LCLs) of Yoruban ancestry with known genetic information to perform a genome-wide association study (GWAS) with cellular sensitivity to colistin. Further association studies revealed that single nucleotide polymorphisms (SNPs) associated with gene expression and protein expression were significantly enriched in SNPs associated with cytotoxicity (p ≤ 0.001 for gene and p = 0.015 for protein expression). The most highly associated SNP, chr18:3417240 (p = 6.49 × 10-8), was nominally a cis-expression quantitative trait locus (eQTL) of the gene TGIF1 (transforming growth factor ß (TGFß)-induced factor-1; p = 0.021) and was associated with expression of the protein HOXD10 (homeobox protein D10; p = 7.17 × 10-5). To demonstrate functional relevance in a murine colistin nephrotoxicity model, HOXD10 immunohistochemistry revealed upregulated protein expression independent of mRNA expression in response to colistin administration. Knockdown of TGIF1 resulted in decreased protein expression of HOXD10 and increased resistance to colistin cytotoxicity. Furthermore, knockdown of HOXD10 in renal cells also resulted in increased resistance to colistin cytotoxicity, supporting the physiological relevance of the initial genomic associations.


Asunto(s)
Antibacterianos/farmacología , Colistina/farmacología , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Antibacterianos/efectos adversos , Antibacterianos/toxicidad , Línea Celular , Línea Celular Tumoral , Colistina/efectos adversos , Colistina/toxicidad , Resistencia a Medicamentos/genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
19.
Am J Physiol Renal Physiol ; 310(8): F717-F725, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26764206

RESUMEN

The metabolic status of the kidney is a determinant of injury susceptibility and a measure of progression for many disease processes; however, noninvasive modalities to assess kidney metabolism are lacking. In this study, we employed positron emission tomography (PET) and intravital multiphoton microscopy (MPM) to assess cortical and proximal tubule glucose tracer uptake, respectively, following experimental perturbations of kidney metabolism. Applying dynamic image acquisition PET with 2-18fluoro-2-deoxyglucose (18F-FDG) and tracer kinetic modeling, we found that an intracellular compartment in the cortex of the kidney could be distinguished from the blood and urine compartments in animals. Given emerging literature that the tumor suppressor protein p53 is an important regulator of cellular metabolism, we demonstrated that PET imaging was able to discern a threefold increase in cortical 18F-FDG uptake following the pharmacological inhibition of p53 in animals. Intravital MPM with the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) provided increased resolution and corroborated these findings at the level of the proximal tubule. Extending our observation of p53 inhibition on proximal tubule glucose tracer uptake, we demonstrated by intravital MPM that pharmacological inhibition of p53 diminishes mitochondrial potential difference. We provide additional evidence that inhibition of p53 alters key metabolic enzymes regulating glycolysis and increases intermediates of glycolysis. In summary, we provide evidence that PET is a valuable tool for examining kidney metabolism in preclinical and clinical studies, intravital MPM is a powerful adjunct to PET in preclinical studies of metabolism, and p53 inhibition alters basal kidney metabolism.


Asunto(s)
Glucosa/metabolismo , Riñón/diagnóstico por imagen , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Desoxiglucosa , Radioisótopos de Flúor , Riñón/metabolismo , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
20.
J Am Soc Nephrol ; 26(6): 1347-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25398784

RESUMEN

Preconditioning is a preventative approach, whereby minimized insults generate protection against subsequent larger exposures to the same or even different insults. In immune cells, endotoxin preconditioning downregulates the inflammatory response and yet, preserves the ability to contain infections. However, the protective mechanisms of preconditioning at the tissue level in organs such as the kidney remain poorly understood. Here, we show that endotoxin preconditioning confers renal epithelial protection in various models of sepsis in vivo. We also tested the hypothesis that this protection results from direct interactions between the preconditioning dose of endotoxin and the renal tubules. This hypothesis is on the basis of our previous findings that endotoxin toxicity to nonpreconditioned renal tubules was direct and independent of immune cells. Notably, we found that tubular protection after preconditioning has an absolute requirement for CD14-expressing myeloid cells and particularly, macrophages. Additionally, an intact macrophage CD14-TRIF signaling pathway was essential for tubular protection. The preconditioned state was characterized by increased macrophage number and trafficking within the kidney as well as clustering of macrophages around S1 proximal tubules. These macrophages exhibited increased M2 polarization and upregulation of redox and iron-handling molecules. In renal tubules, preconditioning prevented peroxisomal damage and abolished oxidative stress and injury to S2 and S3 tubules. In summary, these data suggest that macrophages are essential mediators of endotoxin preconditioning and required for renal tissue protection. Preconditioning is, therefore, an attractive model to investigate novel protective pathways for the prevention and treatment of sepsis.


Asunto(s)
Lesión Renal Aguda/metabolismo , Endotoxinas/metabolismo , Precondicionamiento Isquémico/métodos , Túbulos Renales Proximales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lesión Renal Aguda/patología , Análisis de Varianza , Animales , Western Blotting , Movimiento Celular , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Endotoxinas/farmacología , Túbulos Renales Proximales/citología , Receptores de Lipopolisacáridos/metabolismo , Masculino , Ratones , Estrés Oxidativo/fisiología , Distribución Aleatoria , Sepsis/metabolismo , Sepsis/patología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA