Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Nat Microbiol ; 7(1): 73-86, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949826

RESUMEN

The heightened cardiovascular disease (CVD) risk observed among omnivores is thought to be linked, in part, to gut microbiota-dependent generation of trimethylamine-N-oxide (TMAO) from L-carnitine, a nutrient abundant in red meat. Gut microbial transformation of L-carnitine into trimethylamine (TMA), the precursor of TMAO, occurs via the intermediate γ-butyrobetaine (γBB). However, the interrelationship of γBB, red meat ingestion and CVD risks, as well as the gut microbial genes responsible for the transformation of γBB to TMA, are unclear. In the present study, we show that plasma γBB levels in individuals from a clinical cohort (n = 2,918) are strongly associated with incident CVD event risks. Culture of human faecal samples and microbial transplantation studies in gnotobiotic mice with defined synthetic communities showed that the introduction of Emergencia timonensis, a human gut microbe that can metabolize γBB into TMA, is sufficient to complete the carnitine → γBB → TMA transformation, elevate TMAO levels and enhance thrombosis potential in recipients after arterial injury. RNA-sequencing analyses of E. timonensis identified a six-gene cluster, herein named the γBB utilization (gbu) gene cluster, which is upregulated in response to γBB. Combinatorial cloning and functional studies identified four genes (gbuA, gbuB, gbuC and gbuE) that are necessary and sufficient to recapitulate the conversion of γBB to TMA when coexpressed in Escherichia coli. Finally, reanalysis of samples (n = 113) from a clinical, randomized diet, intervention study showed that the abundance of faecal gbuA correlates with plasma TMAO and a red meat-rich diet. Our findings reveal a microbial gene cluster that is critical to dietary carnitine → γBB → TMA → TMAO transformation in hosts and contributes to CVD risk.


Asunto(s)
Enfermedades Cardiovasculares/genética , Carnitina/sangre , Carnitina/metabolismo , Microbioma Gastrointestinal/fisiología , Genes Bacterianos/genética , Familia de Multigenes , Carne Roja , Animales , Enfermedades Cardiovasculares/sangre , Clostridiales/genética , Clostridiales/metabolismo , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Humanos , Metilaminas/metabolismo , Ratones , Ratones Endogámicos C57BL , Estudios Observacionales como Asunto
2.
J Clin Invest ; 129(1): 373-387, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30530985

RESUMEN

BACKGROUND: l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota-dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota-dependent l-carnitine metabolism in humans is unknown. METHODS: Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS: Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION: In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota-dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION: ClinicalTrials.gov NCT01731236. FUNDING: NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.


Asunto(s)
Aterosclerosis , Betaína/análogos & derivados , Carnitina/sangre , Clostridiales/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/microbiología , Aterosclerosis/patología , Betaína/sangre , Femenino , Humanos , Masculino , Ratones , Proyectos Piloto , Veganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA