Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(25): 14395-14404, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513696

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is up-regulated during granulocytic differentiation of acute promyelocytic leukemia (APL) cells induced by all-trans retinoic acid (ATRA). It has been reported that RIG-I recognizes virus-specific 5'-ppp-double-stranded RNA (dsRNA) and activates the type I interferons signaling pathways in innate immunity. However, the functions of RIG-I in hematopoiesis remain unclear, especially regarding its possible interaction with endogenous RNAs and the associated pathways that could contribute to the cellular differentiation and maturation. Herein, we identified a number of RIG-I-binding endogenous RNAs in APL cells following ATRA treatment, including the tripartite motif-containing protein 25 (TRIM25) messenger RNA (mRNA). TRIM25 encodes the protein known as an E3 ligase for ubiquitin/interferon (IFN)-induced 15-kDa protein (ISG15) that is involved in RIG-I-mediated antiviral signaling. We show that RIG-I could bind TRIM25 mRNA via its helicase domain and C-terminal regulatory domain, enhancing the stability of TRIM25 transcripts. RIG-I could increase the transcriptional expression of TRIM25 by caspase recruitment domain (CARD) domain through an IFN-stimulated response element. In addition, RIG-I activated other key genes in the ISGylation pathway by activating signal transducer and activator of transcription 1 (STAT1), including the modifier ISG15 and several enzymes responsible for the conjugation of ISG15 to protein substrates. RIG-I cooperated with STAT1/2 and interferon regulatory factor 1 (IRF1) to promote the activation of the ISGylation pathway. The integrity of ISGylation in ATRA or RIG-I-induced cell differentiation was essential given that knockdown of TRIM25 or ISG15 resulted in significant inhibition of this process. Our results provide insight into the role of the RIG-I-TRIM25-ISGylation axis in myeloid differentiation.


Asunto(s)
Diferenciación Celular , Citocinas/metabolismo , Proteína 58 DEAD Box/metabolismo , Granulocitos/fisiología , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Línea Celular Tumoral , Citocinas/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Estabilidad del ARN , ARN Mensajero/metabolismo , Receptores Inmunológicos , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/genética , Regulación hacia Arriba
2.
Mol Cancer ; 20(1): 8, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402171

RESUMEN

Acute myeloid leukemia (AML) is still incurable due to its heterogeneity and complexity of tumor microenvironment. It is imperative therefore to understand the molecular pathogenesis of AML and identify leukemia-associated biomarkers to formulate effective treatment strategies. Here, we systematically analyzed the clinical characters and natural killer (NK) cells portion in seventy newly-diagnosis (ND) AML patients. We found that the proportion of NK cells in the bone marrow of ND-AML patients could predict the prognosis of patients by analyzing the types and expression abundance of NK related ligands in tumor cells. Furthermore, MCL1 inhibitor but not BCL2 inhibitor combined with NK cell-based immunotherapy could effectively improve the therapeutic efficiency via inhibiting proliferation and inducing apoptosis of AML primary cells as well as cell lines in vitro. There results provide valuable insights that could help for exploring new therapeutic strategies for leukemia treatment.


Asunto(s)
Médula Ósea/patología , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Receptores KIR/metabolismo , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Pronóstico , Análisis de Supervivencia , Adulto Joven
3.
J Cell Mol Med ; 24(11): 6373-6384, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32337851

RESUMEN

Myelodysplastic syndrome (MDS) is clonal disease featured by ineffective haematopoiesis and potential progression into acute myeloid leukaemia (AML). At present, the risk stratification and prognosis of MDS need to be further optimized. A prognostic model was constructed by the least absolute shrinkage and selection operator (LASSO) regression analysis for MDS patients based on the identified metabolic gene panel in training cohort, followed by external validation in an independent cohort. The patients with lower risk had better prognosis than patients with higher risk. The constructed model was verified as an independent prognostic factor for MDS patients with hazard ratios of 3.721 (1.814-7.630) and 2.047 (1.013-4.138) in the training cohort and validation cohort, respectively. The AUC of 3-year overall survival was 0.846 and 0.743 in the training cohort and validation cohort, respectively. The high-risk score was significantly related to other clinical prognostic characteristics, including higher bone marrow blast cells and lower absolute neutrophil count. Moreover, gene set enrichment analyses (GSEA) showed several significantly enriched pathways, with potential indication of the pathogenesis. In this study, we identified a novel stable metabolic panel, which might not only reveal the dysregulated metabolic microenvironment, but can be used to predict the prognosis of MDS.


Asunto(s)
Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis Multivariante , Síndromes Mielodisplásicos/diagnóstico , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Reproducibilidad de los Resultados , Factores de Riesgo , Factores de Tiempo , Adulto Joven
4.
Proc Natl Acad Sci U S A ; 114(20): 5237-5242, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28461508

RESUMEN

DNMT3A is frequently mutated in acute myeloid leukemia (AML). To explore the features of human AML with the hotspot DNMT3A R882H mutation, we generated Dnmt3a R878H conditional knockin mice, which developed AML with enlarged Lin-Sca1+cKit+ cell compartments. The transcriptome and DNA methylation profiling of bulk leukemic cells and the single-cell RNA sequencing of leukemic stem/progenitor cells revealed significant changes in gene expression and epigenetic regulatory patterns that cause differentiation arrest and growth advantage. Consistent with leukemic cell accumulation in G2/M phase, CDK1 was up-regulated due to mTOR activation associated with DNA hypomethylation. Overexpressed CDK1-mediated EZH2 phosphorylation resulted in an abnormal trimethylation of H3K27 profile. The mTOR inhibitor rapamycin elicited a significant therapeutic response in Dnmt3aR878H/WT mice.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Leucemia Mieloide Aguda/genética , Animales , Secuencia de Bases , Diferenciación Celular , Metilación de ADN , ADN Metiltransferasa 3A , Metilasas de Modificación del ADN/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Técnicas de Sustitución del Gen/métodos , Leucemia Mieloide Aguda/metabolismo , Ratones , Mutación , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma
5.
J Transl Med ; 15(1): 178, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830460

RESUMEN

BACKGROUND: Cytogenetic aberrations and gene mutations have long been regarded as independent prognostic markers in AML, both of which can lead to misexpression of some key genes related to hematopoiesis. It is believed that the expression level of the key genes is associated with the treatment outcome of AML. METHODS: In this study, we analyzed the clinical features and molecular aberrations of 560 newly diagnosed non-M3 AML patients, including mutational status of CEBPA, NPM1, FLT3, C-KIT, NRAS, WT1, DNMT3A, MLL-PTD and IDH1/2, as well as expression levels of MECOM, ERG, GATA2, WT1, BAALC, MEIS1 and SPI1. RESULTS: Certain gene expression levels were associated with the cytogenetic aberration of the disease, especially for MECOM, MEIS1 and BAALC. FLT3, C-KIT and NRAS mutations contained conversed expression profile regarding MEIS1, WT1, GATA2 and BAALC expression, respectively. FLT3, DNMT3A, NPM1 and biallelic CEBPA represented the mutations associated with the prognosis of AML in our group. Higher MECOM and MEIS1 gene expression levels showed a significant impact on complete remission (CR) rate, disease free survival (DFS) and overall survival (OS) both in univariate and multivariate analysis, respectively; and an additive effect could be observed. By systematically integrating gene mutational status results and gene expression profile, we could establish a more refined system to precisely subdivide AML patients into distinct prognostic groups. CONCLUSIONS: Gene expression abnormalities contained important biological and clinical informations, and could be integrated into current AML stratification system.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Mutación/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Aberraciones Cromosómicas , Supervivencia sin Enfermedad , Femenino , Humanos , Quimioterapia de Inducción , Lactante , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Análisis Multivariante , Nucleofosmina , Pronóstico , Factores de Riesgo , Resultado del Tratamiento , Adulto Joven
6.
Proc Natl Acad Sci U S A ; 111(7): 2620-5, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24497509

RESUMEN

The gene encoding DNA methyltransferase 3A (DNMT3A) is mutated in ∼20% of acute myeloid leukemia cases, with Arg882 (R882) as the hotspot. Here, we addressed the transformation ability of the DNMT3A-Arg882His (R882H) mutant by using a retroviral transduction and bone marrow transplantation (BMT) approach and found that the mutant gene can induce aberrant proliferation of hematopoietic stem/progenitor cells. At 12 mo post-BMT, all mice developed chronic myelomonocytic leukemia with thrombocytosis. RNA microarray analysis revealed abnormal expressions of some hematopoiesis-related genes, and the DNA methylation assay identified corresponding changes in methylation patterns in gene body regions. Moreover, DNMT3A-R882H increased the CDK1 protein level and enhanced cell-cycle activity, thereby contributing to leukemogenesis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Regulación de la Expresión Génica/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Mielomonocítica Crónica/genética , Animales , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , ADN Metiltransferasa 3A , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Inmunofenotipificación , Inmunoprecipitación , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Análisis por Micromatrices , Mutagénesis Sitio-Dirigida , Mutación Missense/genética
7.
Int J Mol Sci ; 17(12)2016 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-27918488

RESUMEN

Pardosa pseudoannulata is one of the most common wandering spiders in agricultural fields and a potentially good bioindicator for heavy metal contamination. However, little is known about the mechanisms by which spiders respond to heavy metals at the molecular level. In the present study, high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spiders and to identify differentially expressed genes (DEGs) after cadmium exposure. We obtained 60,489 assembled unigenes, 18,773 of which were annotated in the public databases. A total of 2939 and 2491 DEGs were detected between the libraries of two Cd-treated groups and the control. Functional enrichment analysis revealed that metabolism processes and digestive system function were predominately enriched in response to Cd stress. At the cellular and molecular levels, significantly enriched pathways in lysosomes and phagosomes as well as replication, recombination and repair demonstrated that oxidative damage resulted from Cd exposure. Based on the selected DEGs, certain critical genes involved in defence and detoxification were analysed. These results may elucidate the molecular mechanisms underlying spiders' responses to heavy metal stress.


Asunto(s)
Cadmio/toxicidad , Perfilación de la Expresión Génica/métodos , Arañas/efectos de los fármacos , Arañas/genética , Animales , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/genética , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Transcriptoma/genética
8.
Plants (Basel) ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475567

RESUMEN

WUSCHEL-related homeobox (WOX) genes are a class of plant-specific transcription factors, regulating the development of multiple tissues. However, the genomic characterizations and expression patterns of WOX genes have not been analyzed in lotus. In this study, 15 NnWOX genes were identified based on the well-annotated reference genome of lotus. According to the phylogenetic analysis, the NnWOX genes were clustered into three clades, i.e., ancient clade, intermediate clade, and WUS clade. Except for the conserved homeobox motif, we further found specific motifs of NnWOX genes in different clades and divergence gene structures, suggesting their distinct functions. In addition, two NnWOX genes in the ancient clade have conserved expression patterns and other NnWOX genes exhibit different expression patterns in lotus tissues, suggesting a low level of functional redundancy in lotus WOX genes. Furthermore, we constructed the gene co-expression networks for each NnWOX gene. Based on weighted gene co-expression network analysis (WGCNA), ten NnWOX genes and their co-expressed genes were assigned to the modules that were significantly related to the cotyledon and seed coat. We further performed RT-qPCR experiments, validating the expression levels of ten NnWOX genes in the co-expression networks. Our study reveals comprehensive genomic features of NnWOX genes in lotus, providing a solid basis for further function studies.

9.
Front Cell Dev Biol ; 11: 1180625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608927

RESUMEN

Background: Cuprotosis is a recently discovered copper-dependent cell death mechanism that relies on mitochondrial respiration. However, the role of cuprotosis-related genes (CRGs) in hepatocellular carcinoma (HCC) and their prognostic significances remain unknown. Methods: Based on the recently published CRGs, the LASSO Cox regression analysis was applied to construct a CRGs risk model using the gene expression data from the International Cancer Genome Consortium as a training set, followed by validation with datasets from The Cancer Genome Atlas and the Gene Expression Omnibus (GSE14520). Functional enrichment analysis of the CRGs was performed by single-sample gene set enrichment analysis. Results: Five of the 13 previously published CRGs were identified to be associated with prognosis in HCC. Kaplan-Meier analysis suggested that patients with high-risk scores have a shorter overall survival time than patients with low-risk scores. ROC curves indicated that the average AUC was more than 0.7, even at 4 years, and at least 0.5 at 5 years. Moreover, addition of this CRG risk score can significantly improve the efficiency of predicting overall survival compared to using traditional factors alone. Functional analysis demonstrated increased presence of Treg cells in patients with high-risk scores, suggesting a suppressed immune state in these patients. Finally, we point to the possibility that novel immunotherapies such as inhibitors of PDCD1, TIGIT, IDO1, CD274, CTLA4, and LAG3 may have potential benefits in high-risk patients. Conclusion: We constructed a better prognostic model for liver cancer by using CRGs. The CRG risk score established in this study can serve as a potentially valuable tool for predicting clinical outcome of patients with HCC.

10.
Comput Struct Biotechnol J ; 20: 3304-3312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782741

RESUMEN

The SARS-CoV-2 is constantly mutating, and the new coronavirus such as Omicron has spread to many countries around the world. Anexelekto (AXL) is a transmembrane protein with biological functions such as promoting cell growth, migration, aggregation, metastasis and adhesion, and plays an important role in cancers and coronavirus disease 2019 (COVID-19). Unlike angiotensin-converting enzyme 2 (ACE2), AXL was highly expressed in respiratory system cells. In this study, we verified the AXL expression in cancer and normal tissues and found AXL expression was strongly correlated with cancer prognosis, tumor mutation burden (TMB), the microsatellite instability (MSI) in most tumor types. Immune infiltration analysis also demonstrated that there was an inextricable link between AXL expression and immune scores in cancer patients, especially in BLCA, BRCA and CESC. The NK-cells, plasmacytoid dendritic cells, myeloid dendritic cells, as one of the important components of the tumor microenvironment, were highly expressed AXL. In addition, AXL-related tumor neoantigens were identified and might provide the novel potential targets for tumor vaccines or SARS-Cov-2 vaccines research in cancer patients.

11.
Int Immunopharmacol ; 108: 108722, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35381563

RESUMEN

The treatment of relapse or refractory multiple myeloma (RRMM) is still a big challenge in clinic. Recently, several clinical trials indicated that the XPO1 inhibitor, selinexor could significantly improve the remission rate in MM patients. However, the heterogeneous genetic background greatly influenced the efficiency of selinexor among MM. Here, we tried to characterized the biomarkers associated with selinexor sensitivity by analyzing gene expression data in MM patients. We found the cytogenetic background of selinexor sensitive MM patients was not limited to specific cytogenetic subtypes. In addition, by weighted gene co-expression network analysis (WGCNA), we obtained 10 key genes which showed a strong correlation with the selinexor sensitivity in MM patients. Notably, ABCC4 (MRP4) was the only gene which was both differentially expressed and proved to be clinical prognostic valuable (both for event-free survival and overall survival) in MM patients. We further validated the heterogenous expression of ABCC4 in MM cell lines and its value as a novel indicator for selinexor sensitivity. Moreover, immune infiltration analysis showed that ABCC4 expression had a significantly positive correlation with NK infiltration as well as immunotherapy target TIM-3 (HAVCR2) expression. Collectively, our findings indicated that ABCC4 might be a predictive biomarker of selinexor sensitivity in MM patients, which could be enhanced if combined with immunotherapy drugs such as TIM-3 inhibitor.


Asunto(s)
Resistencia a Antineoplásicos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Mieloma Múltiple , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Hidrazinas , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/metabolismo , Triazoles
12.
Front Immunol ; 13: 1053856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618415

RESUMEN

Immune checkpoint inhibitors represented by PD-1 have greatly changed the way cancer is treated. In addition to PD-1, new immune checkpoints are constantly excavated to better treat cancer. Recently, protein tyrosine phosphatase 1B (PTP1B) was identified as a new immune checkpoint and played a critical role in the treatment of tumors by inhibiting the proliferation and cytotoxicity of T cells induced by tumor antigen. To explore the targeting role of PTP1B in precision tumor therapy, we deeply analyzed the expression and prognosis of PTP1B in all tumors. Survival analysis results indicated that PTP1B was highly expressed in most tumor tissues and indicated poor prognosis in acute-myeloid-leukemia (LAML), brain-lower-grade-glioma (LGG), kidney-renal clear-cell-carcinoma (KIRC) and uveal-melanoma (UVM). The methylation status of PTP1B in these four tumors exhibited hypomethylation and mutation landscape showed that PTP1B had its specific characteristics in genomic instability and heterogeneity. The homologous recombination deficiency (HRD) and loss of heterozygosity (LOH) were positive related to PTP1B expression in liver-hepatocellular-carcinoma (LIHC) and kidney-chromophobe (KICH), while the immunescore and immune infiltration displayed a significant positive correlation with PTP1B expression in LGG and UVM. Drug sensitivity tests showed that the PTP1B inhibitor MSI-1436 had a sensitivity effect suppressing tumor cell viability and suggested it enhanced the efficacy of PD-1 inhibitors in cancers.


Asunto(s)
Carcinoma Hepatocelular , Glioma , Neoplasias Hepáticas , Melanoma , Humanos , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Multiómica , Melanoma/genética , Carcinoma Hepatocelular/patología , Glioma/genética , Neoplasias Hepáticas/patología , Encéfalo/metabolismo , Matriz Extracelular/metabolismo
13.
Comput Struct Biotechnol J ; 20: 5226-5234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187930

RESUMEN

Tumor necrosis factor-α-inducible protein 8-like 2 (TIPE2) is encoded by TNFAIP8L2 and is a newly identified negative regulator of natural and acquired immunity that plays a critical function in maintaining immune homeostasis. Recently, CAR-NK immune cell therapy has been a focus of major research efforts as a novel cancer therapeutic strategy. TIPE2 is a potential checkpoint molecule for immune cell maturation and antitumor immunity that could be used as a novel NK cell-based immunotherapeutic approach. In this study, we explored the expression of TNFAIP8L2 across various tumor types and found that TNFAIP8L2 was highly expressed in most tumor types and correlated with prognosis. Survival analysis showed that TNFAIP8L2 expression was predictive of improved survival in cervical-squamous-cell-carcinoma (CESC), sarcoma (SARC) and skin-cutaneous-melanoma (SKCM). Conversely, TNFAIP8L2 expression predicted poorer survival in acute myeloid leukemia (LAML), lower-grade-glioma (LGG), kidney-renal-clear-cell-carcinoma (KIRC) and uveal-melanoma (UVM). Analysis of stemness features and immune cell infiltration indicated that TNFAIP8L2 was significantly associated with cancer stem cell index and increased macrophage and dendritic cell infiltration. Our data suggest that TNFAIP8L2 may be a novel immune checkpoint biomarker across different tumor types, particularly in LAML, LGG, KIRC and UVM, and may have further utility as a potential target for immunotherapy.

14.
Front Pharmacol ; 13: 891952, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865948

RESUMEN

Tigecycline is a broad-spectrum active intravenous antibiotic that is active against methicillin-resistant staphylococcus aureus. In Phase 3 and 4 clinical trials, increased all-cause mortality was observed in patients treated with tigecycline compared to patients in the control group. The reason for the increase is unclear. In this study, we found that tigecycline cause abnormal coagulation in tumor patients, especially in patients with hematological malignancies. The main manifestations were decreased fibrinogen and prolonged activated prothrombin time (APTT), thrombin time (TT), and D-dimer. In addition, through functional studies, we found that tigecycline inhibit platelet adhesion and aggregation, and the coagulation function of patients gradually recover after discontinuation. Gene sequencing results suggested that tigecycline significantly regulate the expression of genes related to platelet function pathways and increase the incidence of single nucleotide polymorphisms and the number of alternative splices in the Chinese hamster ovary (CHO) cells treated with tigecycline. An abnormal function and low numbers of platelets are common in patients with hematological malignancies. Our study can explain the mechanism of abnormal coagulation caused by tigecycline. Additionally, doctors who apply tigecycline to cure infections in tumor patients should be warned.

15.
DNA Cell Biol ; 39(11): 2040-2051, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32915082

RESUMEN

As suggested by an increasing amount of evidence, there is alternative splicing (AS) modification within malignancy, which is related to cancer occurrence and development. AS within acute myeloid leukemia (AML) has not yet been systematically analyzed yet. This study analyzed the transcriptomic profiling and corresponding clinical data from AML cases based on The Cancer Genome Atlas (TCGA). In addition, the prediction model, along with the splicing network, was used to analyze the prognosis for AML patients according to the seven different AS event types. Among the 34,984 AS events across the 8830 genes, 2896 AS events were detected among 1905 genes, showing marked correlation with the overall survival of patients. The risk scoring model based on all AS event types was the most efficient in identifying the prognosis for AML patients. Meanwhile, the area under the curve at 1-, 3-, 5-year were 0.852, 0.935, 0.955, respectively. At the same time, the splicing regulating network, which was constituted by 21 splicing factor genes as well as 32 AS events related to survival, was characterized. In conclusion, our predictive model constructed based on the AS events accurately predicts the survival for AML patients. In addition, the network between AS events and splicing factor is established, which may serve as a potential mechanism.


Asunto(s)
Empalme Alternativo/genética , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Análisis de Supervivencia , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes , Humanos , Leucemia Mieloide Aguda/epidemiología , Leucemia Mieloide Aguda/patología , Masculino , Pronóstico , ARN Mensajero/genética , Transcriptoma/genética
16.
Ann Transl Med ; 8(6): 318, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32355762

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a type of cancer that consists of a group of hematological malignancies with high heterogeneity. DNA methyltransferase 3A (DNMT3A)-mutated AML patients have a poor prognosis. Some long non-coding RNAs (lncRNAs) have been reported to enhance therapeutic sensitivity, and so could affect the overall survival rate of elderly cytogenetically normal acute myeloid leukemia (CN-AML) patients; however, studies on the lncRNA signature in DNMT3A-mutated AML are rare. METHOD: The DNMT3A R878H conditional knock-in mouse model was constructed to explore the lncRNAs of DNMT3A mutation by using the Cuffcomparison method. Cis and trans regulation networks were used to predict candidate genes. The expression levels in leukemic cell lines and the prognostic index of these candidate genes were analyzed with the Broad Institute Cancer Cell Line Encyclopedia (CCLE) and OncoLnc databases. The data for each sample were statistically analyzed using GraphPad Prism. RESULTS: In this study, we applied the DNMT3A R878H conditional knock-in mouse model to explore the lncRNA epigenetic landscape of DNMT3A mutation by using the Cuffcomparison method. Twenty-three differentially expressed lncRNAs were identified in Dnmt3aR878H/WTMx1-Cre+ mice. We next predicted the downstream targetable genes regulated by these lncRNAs through cis and trans regulation networks and found 124 candidate genes are related to these lncRNAs. In further analysis of 124 genes, we found that increased mRNA expression levels of interleukin 1 receptor type 2 (IL1R2), Krüppel-like factor 13 (KLF13), ATPase H+ transporting V1 subunit A (ATP6V1A), proteasome 26S Subunit, non-ATPase 3 (PSMD3), and pyrroline-5-carboxylate reductase 2 (PYCR2) were associated with poor prognosis in AML. Functional analysis of these genes demonstrated that the pathways involved in autophagy, cell cycle, and hematopoietic stem cell differentiation were more enriched in Dnmt3aR878H/WTMx1-Cre+ mice. CONCLUSION: Our study was the first to use DNMT3A R878H conditional knock-in mouse model to predict the specific lncRNAs regulated by the DNMT3A mutation in AML. Six candidate genes were found to be associated with DNMT3A mutation with poor prognosis. Our results provided a possible treatment strategy for this disease.

17.
Int J Biol Sci ; 16(15): 3028-3036, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061814

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, with acute respiratory failure as the most significant symptom, has led to a global pandemic. Angiotensin-converting enzyme 2 (ACE2) is considered as the most important receptor of SARS-CoV-2 and wildly expressed in human tissues. Whereas, the extremely low expression of ACE2 in lung could hardly interpret the severe symptom of pneumonia in COVID-19 patients. Here we profiled two SARS-CoV-2 infection related genes, the transmembrane serine protease 2 (TMPRSS2) and the interferon-inducible transmembrane protein 3 (IFITM3), in human tissues and organs. Consistent with the expression and distribution of ACE2, TMPRSS2 was also highly expressed in digestive, urinary and reproductive systems, but low expressed in lung. Notably, the anti-virus protein IFITM3 also expressed much lower in lung than other tissues, which might be related to the severe lung symptoms of COVID-19. In addition, the low expression of IFITM3 in immune cells suggested that SARS-CoV-2 might attack lymphocytes and induce the cytokine release syndrome (CRS). Furthermore, cancer patients were considered as more susceptible to SARS-CoV-2 infection. Our data supposed that fourteen types of tumors might have different susceptibility to the virus according to ACE2, TMPRSS2 and IFITM3 expression patterns. Interestingly the prognosis of six types of cancers including breast carcinoma (BRCA), lung adenocarcinoma (LUAD), uterine corpus endometrial carcinoma (UCEC), renal clear cell carcinoma (KIRC), prostate adenocarcinoma (PRAD), and hepatocellular carcinoma (LIHC) were closely related to these gene expressions. Our study explored the expression and distribution profiles of two potential novel molecules that might participate in SARS-CoV-2 infection and involved in immunity, which may provide a functional basis for preventing infection of SARS-CoV-2.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/fisiología , Neoplasias/metabolismo , Proteínas de Unión al ARN/fisiología , Receptores Virales/fisiología , Serina Endopeptidasas/fisiología , Enzima Convertidora de Angiotensina 2 , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo , Análisis Mutacional de ADN , Regulación de la Expresión Génica , Voluntarios Sanos , Humanos , Proteínas de la Membrana/genética , Neoplasias/diagnóstico , Neoplasias/genética , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/genética , Neumonía Viral/metabolismo , Pronóstico , Proteínas de Unión al ARN/genética , Receptores Virales/genética , SARS-CoV-2 , Serina Endopeptidasas/genética , Distribución Tisular
18.
Ann Transl Med ; 8(7): 481, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32395525

RESUMEN

BACKGROUND: The new coronavirus pneumonia (NCP) is now causing a severe public health emergency. The novel coronavirus 2019 (2019-nCoV) infected individuals by binding human angiotensin converting enzyme II (ACE2) receptor. ACE2 is widely expressed in multiple organs including respiratory, cardiovascular, digestive and urinary systems in healthy individuals. These tissues with high expression level of ACE2 seemed to be more vulnerable to SARS-CoV-2 infection. Recently, it has been reported that patients with tumors were likely to be more susceptible to SARS-CoV-2 infection and indicated poor prognosis. METHODS: The tissue atlas database and the blood atlas were used to analyze the distribution of ACE2 in human tissues or organs of cancers and normal samples. Starbase dataset was applied to predict the prognosis of cancers according to expression level of ACE2. RESULTS: In this study, we demonstrated a landscape profiling analysis on expression level of ACE2 in pan-cancers and showed the risky of different type of cancers to SARS-CoV-2 according to the expression level of ACE2. In addition, we found that ACE2 was both differential expression and related to the prognosis only in liver hepatocellular carcinoma (LIHC). Relative high expression of ACE2 indicated a favorable prognosis in LIHC, but they might be more susceptible to SARS-CoV-2. CONCLUSIONS: We indeed emphasized that LIHC patients with high expression level of ACE2 should be more cautious of the virus infection. Our study might provide a potential clue for preventing infection of SARS-CoV-2 in cancers.

19.
Aging (Albany NY) ; 12(12): 11864-11877, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32568101

RESUMEN

We explored the roles of adenylyl cyclases (ADCYs) in acute myeloid leukemia (AML). Expression ADCYs in AML and their effect on prognosis was analyzed using data from Oncomine, GEPIA and cBioPortal databases. Frequently altered neighbor genes (FANGs) of ADCYs were detected using the 3D Genome Browser, after which the functions of these FANGs were predicted using Metascape tools. Cell viability and apoptosis were assessed using CCK-8 and Annexin V-FITC/PI kits. Expression levels of ADCYs were higher in AML cells lines and in bone marrow-derived mononuclear cells from AML patients than in control cells, and were predictive of a poor prognosis. A total of 58 ADCY FANGs were identified from the topologically associating domains on the basis of the Hi-C data. Functional analysis of these FANGs revealed abnormal activation of the MAPK signaling pathway. Drug sensitivity tests showed that fasudil plus trametinib or sapanisertib had a synergistic effect suppressing AML cell viability and increasing apoptosis. These findings suggest that dysregulation of ADCY expression leads to altered signaling in the MAPK pathway in AML and that the ADCY expression profile may be predictive of prognosis in AML patients.


Asunto(s)
Adenilil Ciclasas/genética , Biomarcadores de Tumor/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Adenilil Ciclasas/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Biología Computacional , Conjuntos de Datos como Asunto , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mutación , Pronóstico , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
20.
Cancer Med ; 9(12): 4290-4298, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32311840

RESUMEN

Cancer stem cells (CSCs) are characterized by self-renewal and -differential potential as compared to common cancer cells and play an important role in the development and therapeutic resistance of liver hepatocellular carcinoma (LIHC). However, the specific pathogenesis of LIHC stem cells is still unclear, and the genes involved in the stemness of LIHC stem cells are currently unknown. In this study, we investigated novel biomarkers associated with LIHC and explored the expression characteristics of stem cell-related genes in LIHC. We found that mRNA expression-based stemness index (mRNAsi) was significantly overexpressed in liver cancer tissues. Further, mRNAsi expression in LIHC increased with the tumor pathological grade, with grade 4 tumors harboring the greatest stem cell features. Upon establishing mRNAsi scores based on mRNA expression of every gene, we found an association with poor overall survival in LIHC. Moreover, modules of interest were determined based on weighted gene co-expression network analysis (WGCNA) inclusion criteria, and three significant modules (red, green, and brown) and 21 key genes (DCN, ECM1, HAND2, PTGIS, SFRP1, SRPX, COLEC10, GRP182, ADAMTS7, CD200, CDH11, COL8A1, FAP, LZTS1, MAP1B, NAV1, NOTCH3, OLFML2A, PRR16, TMEM119, and VCAN) were identified. Functional analysis of these 21 genes demonstrated their enrichment in pathways involved in angiogenesis, negative regulation of DNA-binding transcription factor activity, apoptosis, and autophagy. Causal relationship with proteins indicated that the Wnt, Notch, and Hypoxia pathways are closely related to LIHC tumorigenesis. To our knowledge, this is the first report of a novel CSC biomarker, mRNAsi, to predict the prognosis of LIHC. Further, we identified 21 key genes through mRNA expression network analysis, which could be potential therapeutic targets to inhibit the stemness of cancer cells in LIHC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/patología , Transcriptoma , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA