Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Dev Biol ; 471: 1-9, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290819

RESUMEN

During vertebrate embryonic development complex morphogenetic events drive the formation of internal organs associated with the developing digestive tract. The foregut organs derive from hepatopancreatic precursor cells that originate bilaterally within the endoderm monolayer, and subsequently converge toward the midline where they coalesce to produce the gut tube from which the liver and pancreas form. The progenitor cells of these internal organs are influenced by the lateral plate mesoderm (LPM), which helps direct them towards their specific fates. However, it is not completely understood how the bilateral organ precursors move toward the embryonic midline and ultimately coalesce to form functional organs. Here we demonstrate that the zebrafish homeobox gene hoxb5b regulates morphogenesis of the foregut endoderm at the midline. At early segmentation stages, hoxb5b is expressed in the LPM adjacent to the developing foregut endoderm. By 24 hpf hoxb5b is expressed directly in the endoderm cells of the developing gut tube. When Hoxb5b function is disrupted, either by morpholino knockdown or sgRNA/Cas9 somatic disruption, the process of foregut morphogenesis is disrupted, resulting in a bifurcated foregut. By contrast, knockdown of the paralogous hoxb5a gene does not alter gut morphology. Further analysis has indicated that Hoxb5b knockdown specimens produce endocrine pancreas cell types, but liver cells are absent. Finally, cell transplantation experiments revealed that Hoxb5b function in the endoderm is not needed for proper coalescence of the foregut at the midline. Together, our findings imply that midline morphogenesis of foregut endoderm is guided by a hoxb5b-mediated mechanism that functions extrinsically, likely within the LPM. Loss of hoxb5b function prevents normal coalescence of endoderm cells at the midline and thus disrupts gut morphogenesis.


Asunto(s)
Tipificación del Cuerpo , Embrión no Mamífero/embriología , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas de Homeodominio/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
2.
Dev Biol ; 402(1): 81-97, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25797153

RESUMEN

During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Islotes Pancreáticos/embriología , Proteínas del Tejido Nervioso/fisiología , Pez Cebra/embriología , Animales , Benzazepinas/química , Diferenciación Celular , Linaje de la Célula , Células Endocrinas/citología , Glucagón/metabolismo , Glucosa/química , Proteínas Fluorescentes Verdes/química , Insulina/metabolismo , Mutagénesis , Oligonucleótidos Antisentido/química , Florizina/química , ARN Mensajero/metabolismo
3.
Development ; 138(21): 4597-608, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21989909

RESUMEN

The vertebrate endocrine pancreas has the crucial function of maintaining blood sugar homeostasis. This role is dependent upon the development and maintenance of pancreatic islets comprising appropriate ratios of hormone-producing cells. In all vertebrate models studied, an initial precursor population of Pdx1-expressing endoderm cells gives rise to separate endocrine and exocrine cell lineages. Within the endocrine progenitor pool a variety of transcription factors influence cell fate decisions, such that hormone-producing differentiated cell types ultimately arise, including the insulin-producing beta cells and the antagonistically acting glucagon-producing alpha cells. In previous work, we established that the development of all pancreatic lineages requires retinoic acid (RA) signaling. We have used the zebrafish to uncover genes that function downstream of RA signaling, and here we identify mnx1 (hb9) as an RA-regulated endoderm transcription factor-encoding gene. By combining manipulation of gene function, cell transplantation approaches and transgenic reporter analysis we establish that Mnx1 functions downstream of RA within the endoderm to control cell fate decisions in the endocrine pancreas progenitor lineage. We confirm that Mnx1-deficient zebrafish lack beta cells, and, importantly, we make the novel observation that they concomitantly gain alpha cells. In Mnx1-deficient embryos, precursor cells that are normally destined to differentiate as beta cells instead take on an alpha cell fate. Our findings suggest that Mnx1 functions to promote beta and suppress alpha cell fates.


Asunto(s)
Diferenciación Celular/fisiología , Islotes Pancreáticos/embriología , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Endodermo/citología , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/crecimiento & desarrollo , Transducción de Señal , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Tretinoina/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
4.
Endocrinology ; 163(11)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36124842

RESUMEN

Laminin-α4 (LAMA4) is an extracellular matrix protein implicated in the regulation of adipocyte differentiation and function. Prior research describes a role for LAMA4 in modulating adipocyte thermogenesis and uncoupling protein-1 (UCP1) expression in white adipose; however, the mechanisms involved are poorly understood. Here, we describe that Lama4 knockout mice (Lama4-/-) exhibit heightened mitochondrial biogenesis and peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) expression in subcutaneous white adipose tissue (sWAT). Furthermore, the acute silencing of LAMA4 with small interfering RNA in primary murine adipocytes was sufficient to upregulate the expression of thermogenic markers UCP1 and PR domain containing 16 (PRDM16). Silencing also resulted in an upregulation of PGC1-α and adenosine 5'-monophosphate-activated protein kinase (AMPK)-α expression. Subsequently, we show that integrin-linked kinase (ILK) is downregulated in the sWAT of Lama4-/- mice, and its silencing in adipocytes similarly resulted in elevated expression of UCP1 and AMPKα. Last, we demonstrate that treatment of human induced pluripotent stem cell-derived thermogenic adipocytes with LAMA4 (LN411) inhibited the expression of thermogenic markers and AMPKα. Overall, our results indicate that LAMA4 negatively regulates a thermogenic phenotype and pathways involving mitochondrial biogenesis in adipocytes through the suppression of AMPKα.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Células Madre Pluripotentes Inducidas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Humanos , Laminina/genética , Laminina/metabolismo , Masculino , Ratones , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Interferente Pequeño , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
Sci Rep ; 11(1): 21590, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732776

RESUMEN

The gene KCNJ11 encodes Kir6.2 a major subunit of the ATP-sensitive potassium channel (KATP) expressed in both the pancreas and brain. Heterozygous gain of function mutations in KCNJ11 can cause neonatal diabetes mellitus (NDM). In addition, many patients exhibit neurological defects ranging from modest learning disorders to severe cognitive dysfunction and seizures. However, it remains unclear to what extent these neurological deficits are due to direct brain-specific activity of mutant KATP. We have generated cerebral organoids derived from human induced pluripotent stem cells (hiPSCs) possessing the KCNJ11 mutation p.Val59Met (V59M) and from non-pathogenic/normal hiPSCs (i.e., control/WT). Control cerebral organoids developed neural networks that could generate stable synchronized bursting neuronal activity whereas those derived from V59M cerebral organoids showed reduced synchronization. Histocytochemical studies revealed a marked reduction in neurons localized to upper cortical layer-like structures in V59M cerebral organoids suggesting dysfunction in the development of cortical neuronal network. Examination of temporal transcriptional profiles of neural stem cell markers revealed an extended window of SOX2 expression in V59M cerebral organoids. Continuous treatment of V59M cerebral organoids with the KATP blocker tolbutamide partially rescued the neurodevelopmental differences. Our study demonstrates the utility of human cerebral organoids as an investigative platform for studying the effects of KCNJ11 mutations on neurophysiological outcome.


Asunto(s)
Encéfalo/metabolismo , Organoides/metabolismo , Canales de Potasio de Rectificación Interna/genética , Adulto , Encéfalo/fisiopatología , Técnicas de Cultivo de Célula , Diabetes Mellitus/metabolismo , Electrofisiología , Femenino , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/citología , Recién Nacido , Enfermedades del Recién Nacido/genética , Leucocitos Mononucleares/citología , Microscopía Confocal , Red Nerviosa , Vías Nerviosas , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/metabolismo
6.
Adv Mater ; 33(25): e2100026, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33984170

RESUMEN

Recently developed methods for transforming 2D patterns of thin-film materials into 3D mesostructures create many interesting opportunities in microsystems design. A growing area of interest is in multifunctional thermal, electrical, chemical, and optical interfaces to biological tissues, particularly 3D multicellular, millimeter-scale constructs, such as spheroids, assembloids, and organoids. Herein, examples of 3D mechanical interfaces are presented, in which thin ribbons of parylene-C form the basis of transparent, highly compliant frameworks that can be reversibly opened and closed to capture, envelop, and mechanically restrain fragile 3D tissues in a gentle, nondestructive manner, for precise measurements of viscoelastic properties using techniques in nanoindentation. Finite element analysis serves as a design tool to guide selection of geometries and material parameters for shape-matching 3D architectures tailored to organoids of interest. These computational approaches also quantitate all aspects of deformations during the processes of opening and closing the structures and of forces imparted by them onto the surfaces of enclosed soft tissues. Studies of cerebral organoids by nanoindentation show effective Young's moduli in the range from 1.5 to 2.5 kPa depending on the age of the organoid. This collection of results suggests broad utility of compliant 3D mesostructures in noninvasive mechanical measurements of millimeter-scale, soft biological tissues.


Asunto(s)
Organoides , Módulo de Elasticidad , Análisis de Elementos Finitos
7.
eNeuro ; 7(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32493757

RESUMEN

Sleep apnea causes cognitive deficits and is associated with several neurologic diseases. Intermittent hypoxia (IH) is recognized as a principal mediator of pathophysiology associated with sleep apnea, yet the basis by which IH contributes to impaired cognition remains poorly defined. Using a mouse model exposed to IH, this study examines how the transcription factor, hypoxia inducible factor 1a (HIF1a), contributes to disrupted synaptic physiology and spatial memory. In wild-type mice, impaired performance in the Barnes maze caused by IH coincided with a loss of NMDA receptor (NMDAr)-dependent long-term potentiation (LTP) in area CA1 and increased nuclear HIF1a within the hippocampus. IH-dependent HIF1a signaling caused a two-fold increase in expression of the reactive oxygen species (ROS) generating enzyme NADPH oxidase 4 (NOX4). These changes promoted a pro-oxidant state and the downregulation of GluN1 within the hippocampus. The IH-dependent effects were not present in either mice heterozygous for Hif1a (HIF1a+/-) or wild-type mice treated with the antioxidant manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP). Our findings indicate that HIF1a-dependent changes in redox state are central to the mechanism by which IH disrupts hippocampal synaptic plasticity and impairs spatial memory. This mechanism may enhance the vulnerability for cognitive deficit and lower the threshold for neurologic diseases associated untreated sleep apnea.


Asunto(s)
Hipoxia , Memoria Espacial , Animales , Hipocampo , Ratones , Plasticidad Neuronal , Especies Reactivas de Oxígeno
8.
Mol Cell Biol ; 25(2): 706-15, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15632071

RESUMEN

We have previously demonstrated that GATA-2 and GATA-3 are expressed in adipocyte precursors and control the preadipocyte-to-adipocyte transition. Constitutive expression of both GATA-2 and GATA-3 suppressed adipocyte differentiation, partially through direct binding to the peroxisome proliferator-activated receptor gamma (PPARgamma) promoter and suppression of its basal activity. In the present study, we demonstrate that both GATA-2 and GATA-3 form protein complexes with CCAAT/enhancer binding protein alpha (C/EBPalpha) and C/EBPbeta, members of a family of transcription factors that are integral to adipogenesis. We mapped this interaction to the basic leucine zipper domain of C/EBPalpha and a region adjacent to the carboxyl zinc finger of GATA-2. The interaction between GATA and C/EBP factors is critical for the ability of GATA to suppress adipocyte differentiation. Thus, these results show that in addition to its previously recognized function in suppressing PPARgamma transcriptional activity, interaction of GATA factors with C/EBP is necessary for their ability to negatively regulate adipogenesis.


Asunto(s)
Adipocitos/fisiología , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/citología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , ADN/metabolismo , Proteínas de Unión al ADN/genética , Factor de Transcripción GATA2 , Factor de Transcripción GATA3 , Regulación de la Expresión Génica , Humanos , Ratones , Complejos Multiproteicos , PPAR gamma/genética , PPAR gamma/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/genética , Factores de Transcripción/genética
9.
Curr Top Dev Biol ; 124: 235-276, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28335861

RESUMEN

The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.


Asunto(s)
Diabetes Mellitus/terapia , Páncreas/embriología , Regeneración , Pez Cebra/embriología , Animales , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/trasplante , Páncreas/citología , Pez Cebra/genética
10.
Islets ; 4(4): 320-2, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22935732

RESUMEN

A full understanding of embryonic endocrine pancreas development will be key to the establishment of islet replacement strategies. In particular, it is important to identify molecular pathways that establish the correct balance of specific endocrine pancreatic islet cell types. Recently, our work in the zebrafish has revealed that the correct ratio of α and ß cell fates depends on the homeodomain transcription factor Mnx1 (Hb9); in the absence of functional Mnx1, ß cell precursors give rise to α cells. ( 1) Our study suggests that mnx1 may function in ß cell precursors to suppress the α cell fate. Here we consider how Mnx1 may interact with other endocrine-specific transcription factors to specify ß cells. Our work emphasizes the vital importance of Mnx1 for ß cell development, and suggests that identifying Mnx1 transcriptional targets in ß cell precursors may provide important new information of direct relevance to stem cell-based protocols to cure diabetes.


Asunto(s)
Expresión Génica , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/fisiología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Animales , Diferenciación Celular , Técnicas de Silenciamiento del Gen , Proteína Homeobox Nkx-2.2 , Pez Cebra
11.
Dev Biol ; 310(2): 454-69, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17850784

RESUMEN

In Xenopus, primitive blood originates from the mesoderm, but extrinsic signals from the ectoderm are required during gastrulation to enable these cells to differentiate as erythrocytes. The nature of these signals, and how they are transcriptionally regulated, is not well understood. We have previously shown that bone morphogenetic proteins (BMPs) are required to signal to ectodermal cells to generate secondary non-cell-autonomous signal(s) necessary for primitive erythropoiesis, and that calmodulin-dependent protein kinase IV (CaM KIV) antagonizes BMP signaling. The current studies demonstrate that Gata-2 functions downstream of BMP receptor activation in these same cells, and is a direct target for antagonism by CaM KIV. We show, using loss of function analysis in whole embryos and in explants, that ectodermal Gata-2 is required for primitive erythropoiesis, and that BMP signals cannot rescue blood defects caused by ectoderm removal or loss of ectodermal GATA-2. Furthermore, we provide evidence that acetylation of GATA-2 is required for its function in primitive blood formation in vivo. Our data support a model in which Gata-2 is a transcriptional target downstream of BMPs within ectodermal cells, while activation of the CaM KIV signaling pathway alters GATA-2 function posttranslationally, by inhibiting its acetylation.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/fisiología , Factor de Transcripción GATA2/fisiología , Hematopoyesis , Proteínas de Xenopus/fisiología , Xenopus/fisiología , Animales , Ectodermo/fisiología , Eritropoyesis , Femenino , Xenopus/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA