Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768800

RESUMEN

Extracellular matrix (ECM) hydrogel promotes tissue regeneration in lesion cavities after stroke. However, a bioscaffold's regenerative potential needs to be considered in the context of the evolving pathological environment caused by a stroke. To evaluate this key issue in rats, ECM hydrogel was delivered to the lesion core/cavity at 7-, 14-, 28-, and 90-days post-stroke. Due to a lack of tissue cavitation 7-days post-stroke, implantation of ECM hydrogel did not achieve a sufficient volume and distribution to warrant comparison with the other time points. Biodegradation of ECM hydrogel implanted 14- and 28-days post-stroke were efficiently (80%) degraded by 14-days post-bioscaffold implantation, whereas implantation 90-days post-stroke revealed only a 60% decrease. Macrophage invasion was robust at 14- and 28-days post-stroke but reduced in the 90-days post-stroke condition. The pro-inflammation (M1) and pro-repair (M2) phenotype ratios were equivalent at all time points, suggesting that the pathological environment determines macrophage invasion, whereas ECM hydrogel defines their polarization. Neural cells (neural progenitors, neurons, astrocytes, oligodendrocytes) were found at all time points, but a 90-days post-stroke implantation resulted in reduced densities of mature phenotypes. Brain tissue restoration is therefore dependent on an efficient delivery of a bioscaffold to a tissue cavity, with 28-days post-stroke producing the most efficient biodegradation and tissue regeneration, whereas by 90-days post-stroke, these effects are significantly reduced. Improving our understanding of how the pathological environment influences biodegradation and the tissue restoration process is hence essential to devise engineering strategies that could extend the therapeutic window for bioscaffolds to repair the damaged brain.


Asunto(s)
Matriz Extracelular , Hidrogeles , Neuronas/fisiología , Regeneración , Accidente Cerebrovascular/terapia , Andamios del Tejido , Animales , Encéfalo/fisiología , Inflamación , Macrófagos , Masculino , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/fisiopatología
2.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915509

RESUMEN

Underlying drivers of late-onset Alzheimer's disease (LOAD) pathology remain unknown. However, multiple biologically diverse risk factors share a common pathological progression. To identify convergent molecular abnormalities that drive LOAD pathogenesis we compared two common midlife risk factors for LOAD, heavy alcohol use and obesity. This revealed that disrupted lipophagy is an underlying cause of LOAD pathogenesis. Both exposures reduced lysosomal flux, with a loss of neuronal lysosomal acid lipase (LAL). This resulted in neuronal lysosomal lipid (NLL) accumulation, which opposed Aß localization to lysosomes. Neuronal LAL loss both preceded (with aging) and promoted (targeted knockdown) Aß pathology and cognitive deficits in AD mice. The addition of recombinant LAL ex vivo and neuronal LAL overexpression in vivo prevented amyloid increases and improved cognition. In WT mice, neuronal LAL declined with aging and correlated negatively with entorhinal Aß. In healthy human brain, LAL also declined with age, suggesting this contributes to the age-related vulnerability for AD. In human LOAD LAL was further reduced, correlated negatively with Aß1-42, and occurred with polymerase pausing at the LAL gene. Together, this finds that the loss of neuronal LAL promotes NLL accumulation to impede degradation of Aß in neuronal lysosomes to drive AD amyloid pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA