Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nat Immunol ; 19(9): 942-953, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30111894

RESUMEN

The sensing of microbial genetic material by leukocytes often elicits beneficial pro-inflammatory cytokines, but dysregulated responses can cause severe pathogenesis. Genome-wide association studies have linked the gene encoding phospholipase D3 (PLD3) to Alzheimer's disease and have linked PLD4 to rheumatoid arthritis and systemic sclerosis. PLD3 and PLD4 are endolysosomal proteins whose functions are obscure. Here, PLD4-deficient mice were found to have an inflammatory disease, marked by elevated levels of interferon-γ (IFN-γ) and splenomegaly. These phenotypes were traced to altered responsiveness of PLD4-deficient dendritic cells to ligands of the single-stranded DNA sensor TLR9. Macrophages from PLD3-deficient mice also had exaggerated TLR9 responses. Although PLD4 and PLD3 were presumed to be phospholipases, we found that they are 5' exonucleases, probably identical to spleen phosphodiesterase, that break down TLR9 ligands. Mice deficient in both PLD3 and PLD4 developed lethal liver inflammation in early life, which indicates that both enzymes are needed to regulate inflammatory cytokine responses via the degradation of nucleic acids.


Asunto(s)
Células Dendríticas/fisiología , Endosomas/metabolismo , Exonucleasas/metabolismo , Hepatitis/genética , Macrófagos/fisiología , Glicoproteínas de Membrana/metabolismo , Fosfolipasa D/metabolismo , Enfermedad de Alzheimer/genética , Animales , Artritis Reumatoide/genética , ADN de Cadena Simple/inmunología , Exonucleasas/genética , Estudio de Asociación del Genoma Completo , Humanos , Interferón gamma/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa D/genética , Esclerodermia Sistémica/genética , Transducción de Señal , Receptor Toll-Like 9/metabolismo
2.
Nucleic Acids Res ; 52(1): 370-384, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994783

RESUMEN

The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.


Asunto(s)
Exodesoxirribonucleasas , Fosfolipasa D , Humanos , Lisosomas/metabolismo , Fosfolipasa D/química , Fosfolipasas , Exodesoxirribonucleasas/química
3.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775843

RESUMEN

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Asunto(s)
Autofagia , Catepsinas , Lisosomas , Proteolisis , Humanos , Lisosomas/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitosis , Catepsina L/metabolismo , Catepsina L/genética , Línea Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
4.
Mol Cell Proteomics ; 22(3): 100509, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791992

RESUMEN

Lysosomes, the main degradative organelles of mammalian cells, play a key role in the regulation of metabolism. It is becoming more and more apparent that they are highly active, diverse, and involved in a large variety of processes. The essential role of lysosomes is exemplified by the detrimental consequences of their malfunction, which can result in lysosomal storage disorders, neurodegenerative diseases, and cancer. Using lysosome enrichment and mass spectrometry, we investigated the lysosomal proteomes of HEK293, HeLa, HuH-7, SH-SY5Y, MEF, and NIH3T3 cells. We provide evidence on a large scale for cell type-specific differences of lysosomes, showing that levels of distinct lysosomal proteins are highly variable within one cell type, while expression of others is highly conserved across several cell lines. Using differentially stable isotope-labeled cells and bimodal distribution analysis, we furthermore identify a high confidence population of lysosomal proteins for each cell line. Multi-cell line correlation of these data reveals potential novel lysosomal proteins, and we confirm lysosomal localization for six candidates. All data are available via ProteomeXchange with identifier PXD020600.


Asunto(s)
Neuroblastoma , Proteoma , Ratones , Animales , Humanos , Proteoma/metabolismo , Células HEK293 , Células 3T3 NIH , Neuroblastoma/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo
5.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34350967

RESUMEN

The spatiotemporal cellular distribution of lysosomes depends on active transport mainly driven by microtubule motors such as kinesins and dynein. Different protein complexes attach these molecular motors to their vesicular cargo. TMEM55B (also known as PIP4P1), as an integral lysosomal membrane protein, is a component of such a complex that mediates the retrograde transport of lysosomes by establishing interactions with the cytosolic scaffold protein JIP4 (also known as SPAG9) and dynein-dynactin. Here, we show that TMEM55B and its paralog TMEM55A (PIP4P2) are S-palmitoylated proteins that are lipidated at multiple cysteine residues. Mutation of all cysteines in TMEM55B prevents S-palmitoylation and causes retention of the mutated protein in the Golgi. Consequently, non-palmitoylated TMEM55B is no longer able to modulate lysosomal positioning and the perinuclear clustering of lysosomes. Additional mutagenesis of the dileucine-based lysosomal sorting motif in non-palmitoylated TMEM55B leads to partial missorting to the plasma membrane instead of retention in the Golgi, implicating a direct effect of S-palmitoylation on the adaptor protein-dependent sorting of TMEM55B. Our data suggest a critical role for S-palmitoylation in the trafficking of TMEM55B and TMEM55B-dependent lysosomal positioning.


Asunto(s)
Lipoilación , Lisosomas , Aparato de Golgi/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Transporte de Proteínas
6.
PLoS Genet ; 17(6): e1009619, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34161347

RESUMEN

Lysosome-associated membrane glycoprotein 3 (LAMP3) is a type I transmembrane protein of the LAMP protein family with a cell-type-specific expression in alveolar type II cells in mice and hitherto unknown function. In type II pneumocytes, LAMP3 is localized in lamellar bodies, secretory organelles releasing pulmonary surfactant into the extracellular space to lower surface tension at the air/liquid interface. The physiological function of LAMP3, however, remains enigmatic. We generated Lamp3 knockout mice by CRISPR/Cas9. LAMP3 deficient mice are viable with an average life span and display regular lung function under basal conditions. The levels of a major hydrophobic protein component of pulmonary surfactant, SP-C, are strongly increased in the lung of Lamp3 knockout mice, and the lipid composition of the bronchoalveolar lavage shows mild but significant changes, resulting in alterations in surfactant functionality. In ovalbumin-induced experimental allergic asthma, the changes in lipid composition are aggravated, and LAMP3-deficient mice exert an increased airway resistance. Our data suggest a critical role of LAMP3 in the regulation of pulmonary surfactant homeostasis and normal lung function.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Asma/genética , Homeostasis/genética , Proteína 3 de la Membrana Asociada a Lisosoma/genética , Proteína C Asociada a Surfactante Pulmonar/genética , Surfactantes Pulmonares/metabolismo , Resistencia de las Vías Respiratorias , Células Epiteliales Alveolares/patología , Animales , Asma/inducido químicamente , Asma/metabolismo , Asma/patología , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Femenino , Edición Génica/métodos , Regulación de la Expresión Génica , Lipidómica , Pulmón/metabolismo , Pulmón/patología , Proteína 3 de la Membrana Asociada a Lisosoma/deficiencia , Ratones , Ratones Noqueados , Ovalbúmina/administración & dosificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Pruebas de Función Respiratoria , Transducción de Señal
7.
Cell Tissue Res ; 392(1): 215-234, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35084572

RESUMEN

The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.


Asunto(s)
Enfermedades por Prión , Priones , Humanos , Proteínas Priónicas/metabolismo , Proteína ADAM10/metabolismo , Priones/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Encéfalo/metabolismo , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo
8.
J Biol Chem ; 296: 100152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33288674

RESUMEN

Phospholipase D3 (PLD3) and phospholipase D4 (PLD4), the most recently described lysosomal nucleases, are associated with Alzheimer's disease, spinocerebellar ataxia, and systemic lupus erythematosus. They exhibit 5' exonuclease activity on single-stranded DNA, hydrolyzing it at the acidic pH associated with the lysosome. However, their full cellular function is inadequately understood. To examine these enzymes, we developed a robust and automatable cell-based assay based on fluorophore- and fluorescence-quencher-coupled oligonucleotides for the quantitative determination of acidic 5' exonuclease activity. We validated the assay under knockout and PLD-overexpression conditions and then applied it to characterize PLD3 and PLD4 biochemically. Our experiments revealed PLD3 as the principal acid 5' exonuclease in HeLa cells, where it showed a markedly higher specific activity compared with PLD4. We further used our newly developed assay to determine the substrate specificity and inhibitory profile of PLD3 and found that proteolytic processing of PLD3 is dispensable for its hydrolytic activity. We followed the expression, proteolytic processing, and intracellular distribution of genetic PLD3 variants previously associated with Alzheimer's disease and investigated each variant's effect on the 5' nuclease activity of PLD3, finding that some variants lead to reduced activity, but others not. The development of a PLD3/4-specific biochemical assay will be instrumental in understanding better both nucleases and their incompletely understood roles in vitro and in vivo.


Asunto(s)
Bioensayo/métodos , Exonucleasas/metabolismo , Fosfolipasa D/metabolismo , Proteolisis , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Fosfolipasa D/genética
9.
Hum Genet ; 141(11): 1723-1738, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35226187

RESUMEN

Usher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Arilsulfatasas , Humanos , Proteínas Mutantes , Retinitis Pigmentosa/genética , Sulfatasas , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
10.
EMBO Rep ; 21(10): e50241, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32929860

RESUMEN

Single nucleotide polymorphisms (SNPs) in TMEM106B encoding the lysosomal type II transmembrane protein 106B increase the risk for frontotemporal lobar degeneration (FTLD) of GRN (progranulin gene) mutation carriers. Currently, it is unclear if progranulin (PGRN) and TMEM106B are synergistically linked and if a gain or a loss of function of TMEM106B is responsible for the increased disease risk of patients with GRN haploinsufficiency. We therefore compare behavioral abnormalities, gene expression patterns, lysosomal activity, and TDP-43 pathology in single and double knockout animals. Grn-/- /Tmem106b-/- mice show a strongly reduced life span and massive motor deficits. Gene expression analysis reveals an upregulation of molecular signature characteristic for disease-associated microglia and autophagy. Dysregulation of maturation of lysosomal proteins as well as an accumulation of ubiquitinated proteins and widespread p62 deposition suggest that proteostasis is impaired. Moreover, while single Grn-/- knockouts only occasionally show TDP-43 pathology, the double knockout mice exhibit deposition of phosphorylated TDP-43. Thus, a loss of function of TMEM106B may enhance the risk for GRN-associated FTLD by reduced protein turnover in the lysosomal/autophagic system.


Asunto(s)
Degeneración Lobar Frontotemporal , Péptidos y Proteínas de Señalización Intercelular , Animales , Degeneración Lobar Frontotemporal/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Lisosomas , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso , Progranulinas/genética
11.
Biochem J ; 478(17): 3221-3237, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34405855

RESUMEN

The lysosomal degradation of heparan sulfate is mediated by the concerted action of nine different enzymes. Within this degradation pathway, Arylsulfatase G (ARSG) is critical for removing 3-O-sulfate from glucosamine, and mutations in ARSG are causative for Usher syndrome type IV. We developed a specific ARSG enzyme assay using sulfated monosaccharide substrates, which reflect derivatives of its natural substrates. These sulfated compounds were incubated with ARSG, and resulting products were analyzed by reversed-phase HPLC after chemical addition of the fluorescent dyes 2-aminoacridone or 2-aminobenzoic acid, respectively. We applied the assay to further characterize ARSG regarding its hydrolytic specificity against 3-O-sulfated monosaccharides containing additional sulfate-groups and N-acetylation. The application of recombinant ARSG and cells overexpressing ARSG as well as isolated lysosomes from wild-type and Arsg knockout mice validated the utility of our assay. We further exploited the assay to determine the sequential action of the different sulfatases involved in the lysosomal catabolism of 3-O-sulfated glucosamine residues of heparan sulfate. Our results confirm and extend the characterization of the substrate specificity of ARSG and help to determine the sequential order of the lysosomal catabolic breakdown of (3-O-)sulfated heparan sulfate.


Asunto(s)
Arilsulfatasas/metabolismo , Heparitina Sulfato/análogos & derivados , Heparitina Sulfato/metabolismo , Lisosomas/metabolismo , Sulfatos/metabolismo , Acetilación , Animales , Arilsulfatasas/genética , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Humanos , Ratones , Ratones Noqueados , Especificidad por Sustrato , Transfección
12.
Proc Natl Acad Sci U S A ; 116(16): 7963-7972, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30923110

RESUMEN

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is one of the most abundant and enigmatic enzymes of the CNS. Based on existing UCH-L1 knockout models, UCH-L1 is thought to be required for the maintenance of axonal integrity, but not for neuronal development despite its high expression in neurons. Several lines of evidence suggest a role for UCH-L1 in mUB homeostasis, although the specific in vivo substrate remains elusive. Since the precise mechanisms underlying UCH-L1-deficient neurodegeneration remain unclear, we generated a transgenic mouse model of UCH-L1 deficiency. By performing biochemical and behavioral analyses we can show that UCH-L1 deficiency causes an acceleration of sensorimotor reflex development in the first postnatal week followed by a degeneration of motor function starting at periadolescence in the setting of normal cerebral mUB levels. In the first postnatal weeks, neuronal protein synthesis and proteasomal protein degradation are enhanced, with endoplasmic reticulum stress, and energy depletion, leading to proteasomal impairment and an accumulation of nondegraded ubiquitinated protein. Increased protein turnover is associated with enhanced mTORC1 activity restricted to the postnatal period in UCH-L1-deficient brains. Inhibition of mTORC1 with rapamycin decreases protein synthesis and ubiquitin accumulation in UCH-L1-deficient neurons. Strikingly, rapamycin treatment in the first 8 postnatal days ameliorates the neurological phenotype of UCH-L1-deficient mice up to 16 weeks, suggesting that early control of protein homeostasis is imperative for long-term neuronal survival. In summary, we identified a critical presymptomatic period during which UCH-L1-dependent enhanced protein synthesis results in neuronal strain and progressive loss of neuronal function.


Asunto(s)
Enfermedades Neurodegenerativas , Ubiquitina Tiolesterasa , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/fisiología
13.
Proteomics ; 21(19): e2100043, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34432360

RESUMEN

Neuronal ceroid lipofuscinoses (NCLs) collectively account for the highest prevalence of inherited neurodegenerative diseases in childhood. This disease group is classified by the deposition of similar autofluorescence storage material in lysosomes that is accompanied by seizures, blindness and premature mortality in later disease stages. Defects in several genes affecting various proteins lead to NCL, one of them being CLN6, a transmembrane protein resident in the endoplasmic reticulum. Dysfunctionality of CLN6 causes variant late infantile NCL (vLINCL). The function of CLN6 and how its deficiency affects lysosomal integrity remains unknown. In this work, we performed a comparative proteomic analysis of isolated lysosomal fractions from liver tissue of nclf mice, a natural mouse model displaying a similar disease course than its human counterpart. We could identify a drastic reduction in the protein amounts of selected lysosomal proteins, amongst them several members of the NCL protein family. Most of these proteins were N-glycosylated, soluble hydrolases and their reduction in protein levels was verified by western blotting and enzymatic assays. Hereby we could directly link Cln6 dysfunction to changes in the lysosomal compartment and to other NCL forms.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Lisosomas , Proteínas de la Membrana/genética , Ratones , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Proteínas , Proteómica
14.
Hum Mutat ; 42(3): 261-271, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33300174

RESUMEN

In murine and canine animal models, mutations in the Arylsulfatase G gene (ARSG) cause a particular lysosomal storage disorder characterized by neurological phenotypes. Recently, two variants in the same gene were found to be associated with an atypical form of Usher syndrome in humans, leading to visual and auditory impairment without the involvement of the central nervous system. In this study, we identified three novel pathogenic variants in ARSG, which segregated recessively with the disease in two families from Portugal. The probands were affected with retinitis pigmentosa and sensorineural hearing loss, generally with an onset of symptoms in their fourth decade of life. Functional experiments showed that these pathogenic variants abolish the sulfatase activity of the Arylsulfatase G enzyme and impede the appropriate lysosomal localization of the protein product, which appears to be retained in the endoplasmic reticulum. Our data enable to definitely confirm that different biallelic variants in ARSG cause a specific deaf-blindness syndrome, by abolishing the activity of the enzyme it encodes.


Asunto(s)
Arilsulfatasas , Retinitis Pigmentosa , Síndromes de Usher , Arilsulfatasas/genética , Arilsulfatasas/metabolismo , Humanos , Mutación , Linaje , Fenotipo , Portugal , Retinitis Pigmentosa/genética , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
15.
FASEB J ; 34(11): 14695-14709, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32959924

RESUMEN

The two lysosomal integral membrane proteins MFSD1 and GLMP form a tight complex that confers protection of both interaction partners against lysosomal proteolysis. We here refined the molecular interaction of the two proteins and found that the luminal domain of GLMP alone, but not its transmembrane domain or its short cytosolic tail, conveys protection and mediates the interaction with MFSD1. Our data support the finding that the interaction is essential for the stabilization of the complex. These results are complemented by the observation that N-glycosylation of GLMP in general, but not the type of N-glycans (high-mannose-type or complex-type) or individual N-glycan chains, are essential for protection. We observed that the interaction of both proteins already starts in the endoplasmic reticulum, and quantitatively depends on each other. Both proteins can affect vice versa their intracellular trafficking to lysosomes in addition to the protection from proteolysis. Finally, we provide evidence that MFSD1 can form homodimers both in vitro and in vivo. Our data refine the complex interplay between an intimate couple of a lysosomal transporter and its accessory subunit.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Glicosilación , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Ratones , Unión Proteica , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Transporte de Proteínas
16.
EMBO Rep ; 20(7): e47055, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31267706

RESUMEN

Most cells acquire cholesterol by endocytosis of circulating low-density lipoproteins (LDLs). After cholesteryl ester de-esterification in endosomes, free cholesterol is redistributed to intracellular membranes via unclear mechanisms. Our previous work suggested that the unconventional phospholipid lysobisphosphatidic acid (LBPA) may play a role in modulating the cholesterol flux through endosomes. In this study, we used the Prestwick library of FDA-approved compounds in a high-content, image-based screen of the endosomal lipids, lysobisphosphatidic acid and LDL-derived cholesterol. We report that thioperamide maleate, an inverse agonist of the histamine H3 receptor HRH3, increases highly selectively the levels of lysobisphosphatidic acid, without affecting any endosomal protein or function that we tested. Our data also show that thioperamide significantly reduces the endosome cholesterol overload in fibroblasts from patients with the cholesterol storage disorder Niemann-Pick type C (NPC), as well as in liver of Npc1-/- mice. We conclude that LBPA controls endosomal cholesterol mobilization and export to cellular destinations, perhaps by fluidifying or buffering cholesterol in endosomal membranes, and that thioperamide has repurposing potential for the treatment of NPC.


Asunto(s)
Colesterol/metabolismo , Endosomas/efectos de los fármacos , Lisofosfolípidos/metabolismo , Monoglicéridos/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Piperidinas/farmacología , Animales , Células Cultivadas , Endosomas/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
17.
Biochem J ; 477(20): 3963-3983, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33120425

RESUMEN

Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/enzimología , Lisosomas/metabolismo , Sulfatasas/genética , Sulfatasas/metabolismo , Animales , Dominio Catalítico , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Glicina/análogos & derivados , Glicina/química , Humanos , Lisosomas/enzimología , Filogenia , Procesamiento Proteico-Postraduccional , Sulfatasas/química , Sulfatasas/deficiencia
18.
PLoS Genet ; 14(4): e1007363, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29698489

RESUMEN

The hereditary spastic paraplegias (HSP) are a clinically and genetically heterogeneous group of disorders characterized by progressive lower limb spasticity. Mutations in subunits of the heterotetrameric (ε-ß4-µ4-σ4) adaptor protein 4 (AP-4) complex cause an autosomal recessive form of complicated HSP referred to as "AP-4 deficiency syndrome". In addition to lower limb spasticity, this syndrome features intellectual disability, microcephaly, seizures, thin corpus callosum and upper limb spasticity. The pathogenetic mechanism, however, remains poorly understood. Here we report the characterization of a knockout (KO) mouse for the AP4E1 gene encoding the ε subunit of AP-4. We find that AP-4 ε KO mice exhibit a range of neurological phenotypes, including hindlimb clasping, decreased motor coordination and weak grip strength. In addition, AP-4 ε KO mice display a thin corpus callosum and axonal swellings in various areas of the brain and spinal cord. Immunohistochemical analyses show that the transmembrane autophagy-related protein 9A (ATG9A) is more concentrated in the trans-Golgi network (TGN) and depleted from the peripheral cytoplasm both in skin fibroblasts from patients with mutations in the µ4 subunit of AP-4 and in various neuronal types in AP-4 ε KO mice. ATG9A mislocalization is associated with increased tendency to accumulate mutant huntingtin (HTT) aggregates in the axons of AP-4 ε KO neurons. These findings indicate that the AP-4 ε KO mouse is a suitable animal model for AP-4 deficiency syndrome, and that defective mobilization of ATG9A from the TGN and impaired autophagic degradation of protein aggregates might contribute to neuroaxonal dystrophy in this disorder.


Asunto(s)
Complejo 4 de Proteína Adaptadora/deficiencia , Complejo 4 de Proteína Adaptadora/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejo 4 de Proteína Adaptadora/química , Subunidades del Complejo de Proteínas Adaptadoras/química , Subunidades del Complejo de Proteínas Adaptadoras/deficiencia , Subunidades del Complejo de Proteínas Adaptadoras/genética , Animales , Axones/metabolismo , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neuronas/metabolismo , Agregado de Proteínas/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Receptores de Glutamato/metabolismo , Paraplejía Espástica Hereditaria/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Red trans-Golgi/metabolismo
19.
Neurobiol Dis ; 127: 419-431, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30930081

RESUMEN

Hereditary spastic paraplegia is a spastic gait disorder that arises from degeneration of corticospinal axons. The subtype SPG48 is associated with mutations in the zeta subunit of the adaptor protein complex five (AP5). AP5 function and the pathophysiology of SPG48 are only poorly understood. Here, we report an AP5 zeta knockout mouse, which shows an age-dependent degeneration of corticospinal axons. Our analysis of knockout fibroblasts supports a trafficking defect from late endosomes to the transGolgi network and reveals a structural defect of the Golgi. We further show that both autophagic flux and the recycling of lysosomes from autolysosomes were impaired in knockout cells. In vivo, we observe an increase of autophagosomes and autolysosomes and, at later stages, the accumulation of intracellular waste in neurons. Taken together, we propose that loss of AP5 function blocks autophagy and thus leads to the aberrant accumulation of autophagic cargo, which finally results in axon degeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Neuronas/metabolismo , Paraplejía Espástica Hereditaria/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Lisosomas/patología , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Tractos Piramidales/metabolismo , Tractos Piramidales/patología , Paraplejía Espástica Hereditaria/genética
20.
Hum Mol Genet ; 26(15): 2850-2863, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453791

RESUMEN

Loss of function mutations in progranulin (GRN) cause frontotemporal dementia, but how GRN haploinsufficiency causes neuronal dysfunction remains unclear. We previously showed that GRN is neurotrophic in vitro. Here, we used an in vivo axonal outgrowth system and observed a delayed recovery in GRN-/- mice after facial nerve injury. This deficit was rescued by reintroduction of human GRN and relied on its C-terminus and on neuronal GRN production. Transcriptome analysis of the facial motor nucleus post injury identified cathepsin D (CTSD) as the most upregulated gene. In aged GRN-/- cortices, CTSD was also upregulated, but the relative CTSD activity was reduced and improved upon exogenous GRN addition. Moreover, GRN and its C-terminal granulin domain granulinE (GrnE) both stimulated the proteolytic activity of CTSD in vitro. Pull-down experiments confirmed a direct interaction between GRN and CTSD. This interaction was also observed with GrnE and stabilized the CTSD enzyme at different temperatures. Investigating the importance of this interaction for axonal regeneration in vivo we found that, although individually tolerated, a combined reduction of GRN and CTSD synergistically reduced axonal outgrowth. Our data links the neurotrophic effect of GRN and GrnE with a lysosomal chaperone function on CTSD to maintain its proteolytic capacity.


Asunto(s)
Catepsina D/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Catepsina D/genética , Nervio Facial/metabolismo , Demencia Frontotemporal/genética , Granulinas , Haploinsuficiencia , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Mutación , Progranulinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA